Design and Development of Long Circulating Liposomal Daunorubicin for In Vivo Targeting of Solid Tumors: DaunoXome®

  • Eric A. Forssen
  • Richard T. Proffitt
Part of the Biotechnology Intelligence Unit book series (BIOIU)


This chapter reviews the formulation research, development, and characterization of a tumor-targeting daunorubicin liposome preparation with a long circulating half-life (DaunoXome®). The identification of liposome formulations capable of delivering their contents to solid tumors in vivo made use of an active loading technique for high efficiency entrapment of the gamma emitter, 111In. With this approach, an array of lipid compositions and physical characteristics (size, phase transition temperature, surface charge, etc.) were evaluated in vivo for their capabilities to remain intact for prolonged periods while in the circulation but able to release their entrapped contents when delivered to solid tumors. During these investigations, it was found that liposomes composed of distearoylphosphatidylcholine (DSPC): cholesterol in a 2:1 mole ratio and with diameters less than too nm are particularly effective for maximizing tumor uptake. In clinical studies involving nearly 400 patients, these 111In liposomes were used to image successfully a variety of primary cancers and their metastases. Tumors imaged in these studies include: breast, prostate, colon, kidney, cervix, thyroid, larynx, lung (small cell and non-small cell), lymphomas (malignant and Hodgkin’s), sarcomas (soft tissue and Kaposi’s). Of particular interest was the finding that secondary tumors (presumably metastases) imaged more intensely than did primary tumors, suggesting that secondary tumors may be more efficient at accumulating materials entrapped within these liposomes. This formulation served as a model for development of liposome drug-carrier systems designed to target antineoplastic agents to solid tumors in vivo.Anthracyclines became an early focus of this work since it had been demonstrated previously that the formulation of these compounds into liposomes resulted in lower toxicities for this drug class. As we will discuss, daunorubicin was selected over other anthracyclines for liposome development for several reasons, including a lower rate of cumulative cardiotoxicity and a level of cytotoxicity against tumor cells comparable to or greater than that of doxorubicin. Preclinical investigations indicate that DaunoXome increases in vivo daunorubicin tumor delivery by about 10-fold over free drug, yielding a comparable increase in therapeutic efficacy. Investigations on the modes of delivery and of action indicate that DaunoXome arrives at and accumulates within tumor cells in an intact form. As with the tumor imaging preparation, it appears that DaunoXome extravasates selectively into solid tumors through discontinuities in the capillary beds in the tumor neovasculature. Once within tumor cells, the liposomes release the drug over a prolonged period (36 h or more), providing sustained, high levels of cytotoxic material. HIV-positive patients tolerate DaunoXome well and it compares favorably with the typical therapy of ABV (doxorubicin, bleomycin, vincristine), demonstrating reduced toxicity while retaining comparable antitumor activity. Several countries, including the United States, have approved DaunoXome for use in treating Kaposi’s sarcoma in HIV-positive patients. In this chapter, we report on the formulation development, preclinical and clinical investigations of DaunoXome.


Free Drug Phospholipid Vesicle Small Unilamellar Vesicle Liposomal Daunorubicin Angular Correlation Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kirby C, Gregoriadis G. The effect of lipid composition of small unilamellar liposomes containing melphalan and vincristine on drug clearance after injection into mice. Biochem Pharmacol 1983; 32: 609–15.PubMedCrossRefGoogle Scholar
  2. 2.
    Juliano RL, Stamp D. Pharmacokinetics of liposome-encapsulated anti-tumor drugs. Studies with vinblastine, actinomycin D, cytosine arabinoside, and daunomycin. Biochem Pharmacol 1978; 27:21–7.Google Scholar
  3. 3.
    Freise J, Mueller WH, Magerstedt P, Schmoll HJ. Pharmacokinetics of liposome encapsulated cisplatin in rats. Arch Int Pharmacodyn Ther 1982; 258: 180–92.PubMedGoogle Scholar
  4. 4.
    Allen TM, Everest JM. Effect of liposome size and drug release properties on pharmacokinetics of encapsulated drug in rats. J Pharmacol Exp Ther 1983; 226: 539–44.PubMedGoogle Scholar
  5. 5.
    Patel HM. Transcytosis of drug carriers carrying peptides across epithelial barriers. Biochem Soc Trans 1989; 17: 940–2.PubMedGoogle Scholar
  6. 6.
    Postmes TJ, Hukkelhoven M, van den Bogaard AE, Halders SG, Coenegracht J. Passage through the blood-brain barrier of thyrotropin-releasing hormone encapsulated in liposomes. J Pharm Pharmacol 1980; 32: 722–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Tökés ZA, St.Peteri AK, Todd JA. Availability of liposome content to the nervous system. Liposomes and the blood-brain barrier. Brain Res 1980; 188: 282–6.PubMedCrossRefGoogle Scholar
  8. 8.
    D Silva JB, Notari RE. Drug stability in liposomal suspensions: hydrolysis of indomethacin, cyclocytidine, and p-nitrophenyl acetate. J Pharm Sci 1982; 71: 1394–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Fiore S, Serhan CN. Phospholipid bilayers enhance the stability of leukotriene A4 and epoxytetraenes: stabilization of eicosanoids by liposomes. Biochem Biophys Res Commun 1989; 159: 477–81.PubMedCrossRefGoogle Scholar
  10. 10.
    Kurosaki Y, Kimura T, Muranishi S, Sezaki H. The use of liposomes as enzyme carriers. I. Dependence of enzyme stability on the method of preparation. Chem Pharm Bull (Tokyo) 1981; 29: 1175–8.CrossRefGoogle Scholar
  11. 11.
    Forssen EA, Tökés ZA. In vitro and in vivo studies with adriamycin liposomes. Biochem Biophys Res Commun 1979; 91: 1295–301.PubMedCrossRefGoogle Scholar
  12. 12.
    Rahman A, Kessler A, More N, Sikic B, Rowden G, Woolley P, Schein PS. Liposomal protection of adriamycin-induced cardiotoxicity in mice. Cancer Res 1980; 40: 1532–7.PubMedGoogle Scholar
  13. 13.
    Forssen EA, Tökés ZA. Use of anionic liposomes for the reduction of chronic doxorubicin-induced cardiotoxicity. Proc Natl Acad Sci USA 1981; 78: 1873–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Forssen EA, Tökés ZA. Attenuation of dermal toxicity of doxorubicin by liposome encapsulation. Cancer Treat Rep 1983; 67:481-4.Google Scholar
  15. 15.
    Patel KR, Baldeschwieler JD. Mouse Lewis lung carcinoma and hepatoma ascites treatment by combination of liposome chemotherapy and non-specific immunotherapy. Int J Cancer 1984; 34:717-23.Google Scholar
  16. 16.
    Mauk MR, Gamble RC. Preparation of lipid vesicles containing high levels of entrapped radioactive cations. Anal Biochem 1979; 94:302-7.Google Scholar
  17. 17.
    Mauk MR, Gamble RC. Stability of lipid vesicles in tissues of the mouse: a gamma-ray perturbed angular correlation study. Proc Nail Acad Sci USA 1979; 76:765-9.Google Scholar
  18. 18.
    Hwang KJ, Mauk MR. Fate of lipid vesicles in vivo: a gamma-ray perturbed angular correlation study. Proc Natl Acad Sci USA 1977; 74:4991-5.Google Scholar
  19. 19.
    Meares CF, Bryant RG, Baldeschwieler JD, Shirley DA. Study of carbonic anhydrase using perturbed angular correlations of gamma radiation. Proc Natl Acad Sci USA 1969; 64: 1155–61.PubMedCrossRefGoogle Scholar
  20. 20.
    Meares CF, Sundberg MW, Baldeschwieler JD. Perturbed angular correlation study of a haptenic molecule. Proc Nat Acad Sci USA 1972; 69:37i8-3722.Google Scholar
  21. 21.
    Goodwin DA, Meares CF, Song CH. The study of 111 In-labeled compounds in mice, using perturbed angular correlations of gamma radiations. Radiology 1972; 105: 699–702.PubMedGoogle Scholar
  22. 22.
    Meares CF, Westmoreland DG. The study of biological macromolecules using perturbed angular correlations of gamma radiation. Cold Spring Harb Symp Quant Biol 1972; 36: 511–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Wallingford RH, Williams LE. Is stability a key parameter in the accumulation of phospholipid vesicles in tumors? J Nucl Med 1985; 26: 1180–5.PubMedGoogle Scholar
  24. 24.
    Proffitt RT, Williams LE, Presant CA, Tin GW, Uliana JA, Gamble RC, Baldeschwieler JD. Tumor-imaging potential of liposomes loaded with In-1n-NTA: biodistribution in mice. J Nucl Med 1983; 24:45-51.Google Scholar
  25. 25.
    Proffitt RT, Williams LE, Presant CA, Tin GW, Uliana JA, Gamble RC, Baldeschwieler JD. Liposomal blockade of the reticuloendothelial system: improved tumor imaging with small unilamellar vesicles. Science 1983; 220: 502–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Williams LE, Proffitt RT, Lovisatti L. Possible applications of phospholipid vesicles (liposomes) in diagnostic radiology. J Nucl Med Allied Sci 1984; 28:35-45.Google Scholar
  27. 27.
    Hwang KJ, Luk KFS, Beaumier PL. Volume of distribution and transcapillary passage of small unilamellar vesicles. Life Sci 1982; 31:949-55.Google Scholar
  28. 28.
    Ogihara-Umeda I, Sasaki T, Nishigori H. Active removal of radioactivity in the blood circulation using biotin-bearing liposomes and avidin for rapid tumour imaging. Eur J Nucl Med 1993; 20: 170–2.Google Scholar
  29. 29.
    Ogihara-Umeda I, Sasaki T, Toyama H, Oda K, Senda M, Nishigori H. Rapid tumor imaging by active background reduction using biotin-bearing liposomes and avidin. Cancer Res 1994; 54:463-7.Google Scholar
  30. 30.
    Gordon K, Tajuddin A, Guitart J, Kuzel T, Eramo L, VonRoenn J. Hand-Foot syndrome associated with liposome-encapsulated doxorubicin therapy. Cancer 1995; 75: 2169–2173.Google Scholar
  31. 31.
    Mauk MR, Gamble RC, Baldeschwieler JD. Vesicle targeting: timed release and specificity for leukocytes in mice by subcutaneous injection. Science 1980; 207: 309–11.PubMedCrossRefGoogle Scholar
  32. 32.
    Leipert TK, Baldeschwieler JD, Shirley DA. Applications of gamma ray angular correlations to the study of biological macromolecules in solution. Nature 1968; 220: 907–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Williams LE, Duda RB, Proffitt RT, Beatty BG, Beatty JD, Wong JY, Shively JE, Paxton RJ. Tumor uptake as a function of tumor mass: a mathematic model. J Nucl Med 1988; 29: 103–9.PubMedGoogle Scholar
  34. 34.
    Turner AF, Presant CA, Proffitt RT, Williams LE, Winsor DW, Werner JL. In-itlabeled liposomes: dosimetry and tumor depiction. Radiology 1988; 166: 761–5.PubMedGoogle Scholar
  35. 35.
    Patel KR, Tin GW, Williams LE, Baldeschwieler JD. Biodistribution of phospholipid vesicles in mice bearing Lewis lung carcinoma and granuloma. J Nucl Med 1985; 26:1048-55.Google Scholar
  36. 36.
    Presant CA, Proffitt RT, Turner AF, Williams LE, Winsor D, Werner JL, Kennedy P, Wiseman C et al. Successful imaging of human cancer with indium-ni-labeled phospholipid vesicles. Cancer 1988; 62:905-n.Google Scholar
  37. 37.
    Presant CA, Blayney D, Proffitt RT, Turner AF, Williams LE, Nadel HI, Kennedy P, Wiseman C et al. Preliminary report: imaging of Kaposi’s sarcoma and lymphoma in AIDS with indium-ni-labeled liposomes. Lancet 1990; 335: 1307–9.PubMedCrossRefGoogle Scholar
  38. 38.
    McNeil BJ. Guidlines for evaluating new tests. In: Rocha AFG, Harbert JC, eds. Textbook of Nuclear Medicine: Clinical Applications. Philadelphia: Lea and Febiger, 1979:473-484.Google Scholar
  39. 39.
    Kubo A, Nakamura K, Sammiya T, Katayama M, Hashimoto T, Hashimoto S, Kobayashi H, Teramoto T. Indium-in-labelled liposomes: dosimetry and tumour detection in patients with cancer. Eur J Nucl Med 1993; 20: 107–13.PubMedCrossRefGoogle Scholar
  40. 40.
    Dictor M, Bendsoe N, Runke S, Witte M. Major basement membrane components in Kaposi’s sarcoma, angiosarcoma and benign vascular neogenesis. J Cutan Pathol (Denmark) 1955; 22:435-441.Google Scholar
  41. 41.
    Albini A, Barillari G, Benelli R, Gallo R, Ensoli B. Angiogenic properties of human immunodeficiency virus type t Tat protein. Proc Natl Acad Sci USA 1995; 92: 4838–4842.Google Scholar
  42. 42.
    Schwartz RA. Kaposi’s sarcoma: advances and perspectives. J Am Acad Dermatol 1996; 34: 804–14.Google Scholar
  43. 43.
    Morris CB, Gendelman R, Marrogi AJ, Lu M, Lockyer JM, Alperin-Lea W, Ensoli B. Immunihistochemical detection of Bd-2 in AIDS-associated and classical Kaposi’s sarcoma. Am J Pathol 1996; 148: 1055–63.PubMedGoogle Scholar
  44. 44.
    Noel JC, Hermans P, Andre J, Fayt I, Simonart T, Verhest A, Haot J, Burny A. Herpesvirus-like DNA sequences and Kaposi’s sarcoma: relationship with epidemiology, clinical spectrum, and histologic features. Cancer 1996; 77: 2132–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Brown LF, Tognazzi K, Dvorak HF, Harrist TJ. Strong expression of kinase insert domain-containing receptor, a vascular permeability factor/vascular endothelial growth factor receptor in AIDS-associated Kaposi’s sarcoma and cutaneous angiosarcoma. Am J Pathol 1996; 148: 1065–74.PubMedGoogle Scholar
  46. 46.
    Wu NZ, Klitzman B, Rosner G, Needham D, Dewhirst MW. Measurement of material extravasation in microvascular networks using fluorescence video-microscopy. Microvasc Res 1993; 46: 231–53.PubMedCrossRefGoogle Scholar
  47. 47.
    Presant CA, Scolaro M, Kennedy P, Blayney DW, Flanagan B, Lisak J, Presant J. Liposomal daunorubicin treatment of HIV-associated Kaposi’s sarcoma. Lancet 1993; 341: 1242–3.PubMedCrossRefGoogle Scholar
  48. 48.
    Kennedy KA, Teicher BA, Rockwell S, Sartorelli AC. The hypoxic tumor cell: a target for selective cancer chemotherapy. Biochem Pharmacol 1980; 29: 1–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Jain RK. Delivery of molecular medicine to solid tumors. Science 1996; 271: 1079–80.PubMedCrossRefGoogle Scholar
  50. 50.
    Netti PA, Baxter LT, Boucher Y, Skalak R, Jain RK. Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery. Cancer Res 1995; 55:545i-8.Google Scholar
  51. 51.
    Less JR, Skalak TC, Sevick EM, Jain RK. Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res 1991; 51:265-73.Google Scholar
  52. 52.
    Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 127–31.Google Scholar
  53. 53.
    Martiny-Baron G, Marme D. VEGF-mediated tumour angiogenesis: a new target for cancer therapy. Curr Opin Biotechnol 1995; 6: 675–80.PubMedCrossRefGoogle Scholar
  54. 54.
    Jahroudi N, Greenberger JS. The role of endothelial cells in tumor invasion and metastasis. J Neurooncol 1995; 23: 99–108.Google Scholar
  55. 55.
    Weiss L, Orr FW, Honn KV. Interactions between cancer cells and the microvasculature: a rate-regulator for metastasis. Clin Exp Metastasis 1989; 7: 127–67.PubMedCrossRefGoogle Scholar
  56. 56.
    Bikfalvi A. Significance of angiogenesis in tumour progression and metastasis. Eur J Cancer 1995; 31A:no1–4.Google Scholar
  57. 57.
    Rak JW, St Croix BD, Kerbel RS. Consequences of angiogenesis for tumor progression, metastasis and cancer therapy. Anticancer Drugs 1995; 6: 3–18.Google Scholar
  58. 58.
    Chaplain MA, Giles SM, Sleeman BD, Jarvis RJ. A mathematical analysis of a model for tumour angiogenesis. J Math Biol 1995; 33:744-70.Google Scholar
  59. 59.
    Skinner SA, Tutton PJ, PE OB. Microvascular architecture of experimental colon tumors in the rat. Cancer Res 1990; 50: 2411–7.PubMedGoogle Scholar
  60. 60.
    Byrne HM, Chaplain MA. Mathematical models for tumour angiogenesis: numerical simulations and nonlinear wave solutions. Bull Math Biol 1995; 57: 461–86.Google Scholar
  61. 61.
    Strugar JG, Criscuolo GR, Rothbart D, Harrington WN. Vascular endothelial growth/ permeability factor expression in human glioma specimens: correlation with vasogenic brain edema and tumor-associated cysts. J Neurosurg 1995; 83: 682–9.Google Scholar
  62. 62.
    Warren BA. The vascular morphology of tumors. In: Peterson H-I, ed. Tumor Blood Circulation: Angiogenesis, Vascular Morphology and Blood Flow of Experimental and Human Tumors. Boca Raton, Florida: CRC Press, 1979:1-47.Google Scholar
  63. 63.
    Hwang KJ, Padki MM, Chow DD, Essien HE, Lai JY, Beaumier PL. Uptake of small liposomes by non-reticuloendothelial tissues. Biochim Biophys Acta 1987; 901: 88–96.PubMedCrossRefGoogle Scholar
  64. 64.
    Poste G, Bucana C, Raz A, Bugelski P, Kirsh R, Fidler IJ. Analysis of the fate of systemically administered liposomes and implications for their use in drug delivery. Cancer Res 1982; 42: 1412–22.PubMedGoogle Scholar
  65. 65.
    Papahadjopoulos D, Gabizon A. Targeting of liposomes to tumor cells in vivo. Ann NY Acad Sci 1987; 507: 64–74.Google Scholar
  66. 66.
    Kerr DJ, Kaye SB. Aspects of cytotoxic drug penetration, with particular reference to anthracyclines. Cancer Chemother Pharmacol 1987; 19: 1–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Forssen EA. Chemotherapy with anthracycline liposomes. In: Gregoriadis G, ed. Liposomes as Drug Carriers: Recent Trends and Progress. Chichester: J Wiley and Sons, 1988: 355–364.Google Scholar
  68. 68.
    Forssen EA, Coulter DM, Proffitt RT. Selective in vivo localization of daunorubicin small unilamellar vesicles in solid tumors. Cancer Res 1992; 52: 3255–61.Google Scholar
  69. 69.
    Kaye SB, Boden JA, Ryman BE. The effect of liposome (phospholipid vesicle) entrapment of actinomycin D and methotrexate on the in vivo treatment of sensitive and resistant solid murine tumours. Eur J Cancer 1981; 17:279-89.Google Scholar
  70. 70.
    Ganapathi R, Krishan A, Wodinsky I, Zubrod CG, Lesko LJ. Effect of cholesterol content on antitumor activity and toxicity of liposome-encapsulated i-beta-Darabinofuranosylcytosine in vivo. Cancer Res 1980; 40: 630–3.PubMedGoogle Scholar
  71. 71.
    Rustum YM, Dave C, Mayhew E, Papahadjopoulos D. Role of liposome type and route of administration in the antitumor activity of liposome-entrapped i-beta-Darabinofuranosylcytosine against mouse Lino leukemia. Cancer Res 1979; 39: 1390–5.Google Scholar
  72. 72.
    Gabizon A, Meshorer A, Barenholz Y. Comparative long-term study of the toxicities of free and liposome-associated doxorubicin in mice after intravenous administration. J Nail Cancer Inst 1986; 77: 459–69.Google Scholar
  73. 73.
    Storm G, Roerdink FH, Steerenberg PA, de Jong WH, Crommelin DJ. Influence of lipid composition on the antitumor activity exerted by doxorubicin-containing liposomes in a rat solid tumor model. Cancer Res 1987; 47: 3366–72.PubMedGoogle Scholar
  74. 74.
    van Hoesel QG, Steerenberg PA, Crommelin DJ, van Dijk A, van Oort W, Klein S, Douze JM, de Wildt DJ et al. Reduced cardiotoxicity and nephrotoxicity with preservation of antitumor activity of doxorubicin entrapped in stable liposomes in the LOU/M Wsl rat. Cancer Res 1984; 44: 3698–705.Google Scholar
  75. 75.
    Forssen EA, Tökés ZA. Improved therapeutic benefits of doxorubicin by entrapment in anionic liposomes. Cancer Res 1983; 43546-50.Google Scholar
  76. 76.
    Gabizon AA, Barenholz Y, Bialer M. Prolongation of the circulation time of doxorubicin encapsulated in liposomes containing a polyethylene glycol-derivatized phospholipid: pharmacokinetic studies in rodents and dogs. Pharm Res 1993; 10: 703–8.Google Scholar
  77. 77.
    Gabizon A, Catane R, Uziely B, Kaufman B, Safra T, Cohen R, Martin F, Huang A et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 1994; 54:987-92.Google Scholar
  78. 78.
    Allen TM. Long-circulating (sterically stabilized) liposomes for targeted drug delivery. Trends Pharmacol Sci 1994; 15: 215–20.Google Scholar
  79. 79.
    Forssen EA, Ross ME. Daunoxome treatment of soild tumors: preclinical and clinical investigations. J Liposome Res 1994; 4: 481–512.Google Scholar
  80. 80.
    Weiss RB, Bruno S. Daunorubicin treatment of adult solid tumors. Cancer Treat Rep 1981; 4: 25–8.Google Scholar
  81. 81.
    Von Hoff DD, Rozencweig M, Slavik M, Muggia FM. Activity of daunomycin in solid tumors (letter). JAMA 1976; 236:1693.Google Scholar
  82. 82.
    Von Hoff DD. Use of daunorubicin in patients with solid tumors. Semin Oncol 1984; 11: 23–7.Google Scholar
  83. 83.
    Dano K. Cross-resistance between Adriamycin, Daunomycin and vincristine in Ehrlich Ascites Tumor in vivo. In: Carter SK et al, eds. International Symposium on Adriamycin. Berlin, Heidleberg: Springer-Verlag, 1972: 90–95.CrossRefGoogle Scholar
  84. 84.
    Bachur NR, Steele M, Meriwether WD, Hildebrand RC. Cellular pharmocodynamics of several anthrocycline antibiotics. J Med Chem 1976; 19: 651–4.PubMedCrossRefGoogle Scholar
  85. 85.
    Bosanquet AG. Stability of solutions of antineoplastic agents during preparation and storage for in vitro assays. II. Assay methods, adriamycin and the other antitumour antibiotics. Cancer Chemother Pharmacol 1986; 17: 1–10.CrossRefGoogle Scholar
  86. 86.
    Iwasaki H, Liu YP, Nojyo Y, Ueda T, Nakamura T. Quantitative description of morphologic changes effected by antileukemic agents in L1210 leukemia cells. Anticancer Res 1995; 15:133-9.Google Scholar
  87. 87.
    Arcamone F. In: F. Arcamone, ed. Doxorubicin. New York: Academic Press, 1981:354.Google Scholar
  88. 88.
    Gheuens E, van der Heyden S, Elst H, Eggermont A, Van Oosterom A, De Bruijn E. Multidrug resistance in rat colon carcinoma cell lines CC531, CC531mdr+ and CC531rev. Jpn J Cancer Res 1993; 84: 1201–8.Google Scholar
  89. 89.
    Nagasawa K, Natazuka T, Chihara K, Kitazawa F, Tsumura A, Takara K, Nomiyama M, Ohnishi N et al. Transport mechanism of anthracycline derivatives in human leukemia cell lines: uptake and efflux of pirarubicin in HL6o and pirarubicin-resistant HL6o cells. Cancer Chemother Pharmacol 1996; 37: 297–304.Google Scholar
  90. 90.
    Michieli M, Michelutti A, Damiani D, Pipan C, Raspadori D, Lauria F, Baccarani M. A comparative analysis of the sensitivity of multidrug resistant (MDR) and non-MDR cells to different anthracycline derivatives. Leuk Lymphoma 1993; 9: 255–64.Google Scholar
  91. 91.
    Dorr RT, Von Hoff DD, eds. Cancer Chemotherapy Handbook. 2nd ed. Norwalk, CT: Appleton and Lange, 1994: 1020.Google Scholar
  92. 92.
    Forssen EA, Malé-Brune R, Adler-Moore JP, Lee MJ, Schmidt PG, Krasieva TB, Shimizu S, Tromberg BJ. Fluorescence imaging studies for the disposition of daunorubicin liposomes (DaunoXome) within tumor tissue. Cancer Res 1996; 56: 2066–75.PubMedGoogle Scholar
  93. 93.
    Corbett TH, Griswold DPJ, Roberts BJ, Peckham JC, Schabel FMJ. Biology and therapeutic response of a mouse mammary adenocarcinoma (16/C) and its potential as a model for surgical adjuvant chemotherapy. Cancer Treat Rep 1978; 62: 1471–88.PubMedGoogle Scholar
  94. 94.
    Casazza AM. Experimental evaluation of anthracycline analogs. Cancer Treat Rep 1979; 63:835-44.Google Scholar
  95. 95.
    Gibaldi M, Perrier D. Swarbrick J, ed. In: Drugs and the Pharmaceutical Sciences. Pharmacokinetics. Vol. 1. New York: Marcel Dekker, Inc., 1975; 329.Google Scholar
  96. 96.
    Tsou KC, Lo KW, Ledis SL, Miller EE. Indigogenic phosphodiesters as potential chromogenic cancer chemotherapeutic agents. J Med Chem 1972; 15: 1221–5.PubMedCrossRefGoogle Scholar
  97. 97.
    Ipsen JH, Karlstrom G, Mouritsen OG, Wennerstrom H, Zuckermann MJ. Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta 1987; 905: 162–72.PubMedCrossRefGoogle Scholar
  98. 98.
    Papahadjopoulos D, Cowden M, Kimelberg H. Role of cholesterol in membranes. Effects on phospholipid-protein interactions, membrane permeability and enzymatic activity. Biochim Biophys Acta 1973; 330: 8–26.Google Scholar
  99. 99.
    Papahadjopoulos D, Jacobson K, Nir S, Isac T. Phase transitions in phospholipid vesicles. Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. Biochim Biophys Acta 1973; 311:330-48.Google Scholar
  100. 100.
    Kirby C, Clarke J, Gregoriadis G. Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem J 1980; 186: 591–8.PubMedGoogle Scholar
  101. 101.
    Gill PS, Espina BM, Muggia F, Cabriales S, Tulpule A, Esplin JA, Liebman HA, Forssen E et al. Phase I/II clinical and pharmacokinetic evaluation of liposomal daunorubicin. J Clin Oncol 1995; 13:996–1003.Google Scholar
  102. 102.
    Money-Kyrle JF, Bates F, Ready J, Gazzard BG, Phillips RH, Boag FC. Liposomal daunorubicin in advanced Kaposi’s sarcoma: a phase II study. Clin Oncol (R Coll Radiol) 1993; 5:367-71.Google Scholar
  103. 103.
    Gill PS, Naidu YM, Salahuddin SZ. Recent advances in AIDS-related Kaposi’s sarcoma. Curr Opin Oncol 1990; 2: 1161–6.PubMedCrossRefGoogle Scholar
  104. 104.
    Krown SE. The role of interferon in the therapy of epidemic Kaposi’s sarcoma. Semin Oncol 1987; 14: 27–33.PubMedGoogle Scholar
  105. 105.
    Kaplan SB. Neoplastic complications in HIV disease. Infections in Med 1992; 9: 20.Google Scholar
  106. 106.
    Northfelt DW, Kahn JO, Volberding PA. Treatment of AIDS-related Kaposi’s sarcoma. Hematol Oncol Clin North Am 1991; 5:297-310.Google Scholar
  107. 107.
    Gill PS, Wernz J, Scadden DT, Cohen P, Mukwaya GM, von Roenn JH, Jacobs M, Kempin S et al. Randomized phase III trial of liposomal daunorubicin (DaunoXome) versus doxorubicin, bleomycin, vincristine, (ABV) in AIDS-related Kaposi’s sarcoma. J Clin Oncology 1996; 14:2353-2364.Google Scholar
  108. 108.
    Ogihara-Umeda I, Kojima S. Cholesterol enhances the delivery of liposome-encapsulated gallium-67 to tumors. Eur J Nucl Med 1989; 15: 612–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Schurmann D, Dormann A, Grunewald T, Ruf B. Successful treatment of AIDS-related pulmonary Kaposi’s sarcoma with liposomal daunorubicin. Eur Respir J 1994; 7: 824–5.Google Scholar
  110. 110.
    Hengge UR, Brockmeyer NH, Rasshofer R, Goos M. Fatal hepatic failure with liposomal doxorubicin [letter]. 1993; Lancet 341:383-4.Google Scholar
  111. 111.
    Erdkamp FLG, Hupperets PSGJ, Ten Bokkel-Huinink WW, Nuyts GD, Eestermans GH. Phase II study of liposomal encapsulated daunorubicin (DaunoXome®) in advanced breast cancer. A Phase II pilot trial. (Abstract) 18th Annual San Antonio Breast Cancer Symposium, Dec. 10–13, 1995.Google Scholar
  112. 112.
    Tulpule A, Rarick MU, Kolitz J, Bernstein J, Traynor A, Myers A, Harvey-Buchanan L, Vergel de Dios-Salvosa M, Espina BM, Mukwaya G, Ross M, Levine AM. Liposomal encapsulated daunorubicin (DaunoXome®) has activity in relapsed/refractory low grade and intermediate grade non-Hodgkin’s Lymphoma (NHL). Blood 88:Suppl 1: 92a.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Eric A. Forssen
  • Richard T. Proffitt

There are no affiliations available

Personalised recommendations