Small Molecule Ligands for Targeting Long Circulating Liposomes

  • Martin C. Woodle
  • Danilo D. Lasic
  • Gerrit Storm
Part of the Biotechnology Intelligence Unit book series (BIOIU)


Most of the contributions to this volume demonstrate the therapeutic benefits that can be provided by long circulating liposome (LCL) formulations of therapeutic and diagnostic agents. These benefits begin to approach realization of the “magic bullet” drug delivery concept. However, the success of clinically applied LCL formulations is derived from selective but nonspecific localization, i.e., not mediated by binding to a specific receptor moiety, at accessible pathological tissues where leakage occurs from the vascular circulation. This is sometimes referred to as “passive” targeting and can be thought of as simply “leakage in the plumbing”. Desires to improve targeting by virtue of binding to receptors by attaching corresponding ligands, i.e.,“active” targeting or specific localization, remain largely unfulfilled. An issue for active targeting is the ability of the LCL already localized in the target site to identify and bind to the target cells. Consequently, targeted LCL represent a potentially important means to increase the therapeutic index of encapsulated drugs.1–7


Intracellular Delivery Small Molecule Ligand Prolonged Circulation Conjugation Method Homing Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Klibanov AL, Maruyama K, Beckerleg AM et al. Activity of amphipathic poly-(ethylene glycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunliposome binding to target. Biochim Biophys Acta 1991; 1062: 142–148.PubMedCrossRefGoogle Scholar
  2. 2.
    Mori A, Huang L. Immunoliposome targeting in a mouse model: optimization and therapeutic application. In: Gregoriadis G, ed. Liposome Technology. Boca Raton: CRC Press 1993: 153–162.Google Scholar
  3. 3.
    Torchilin VP, Klibanov AL, Huang L et al. Targeted accumulation of polyethylene glycol-coated immunoliposomes in infarcted rabbit myocardium. FASEB J 1992; 6: 2716–2719.Google Scholar
  4. 4.
    Allen TM, Agrawal AK, Ahmad I et al. Antibody-mediated targeting of long circulating (StealthTM) liposomes. J Lipo Res 1994; 41–25.Google Scholar
  5. 5.
    Woodle MC. Sterically stabilized liposome therapeutics. Adv Drug Del Rev 1995; 16: 249–265.CrossRefGoogle Scholar
  6. 6.
    Goren D, Horowitz AT, Zalipsky S et al. Targeting of Stealth liposomes to erbB2 (Here) Receptor: in vitro and in vivo studies. Br J Cancer 1996; 74: 1749–1756.PubMedCrossRefGoogle Scholar
  7. 7.
    Emanuel N, Kedar E, Bolotin E et al. Targeted delivery of doxorubicin via sterically stabilized immunoliposomes: pharmacokinetics and biodistribution in tumor-bearing mice. Pharm Res 1996; 13: 861–868.PubMedCrossRefGoogle Scholar
  8. 8.
    Blume G, Cevc G, Crommelin MDJA et al. Specific targeting with poly(ethylene glycol)-modified liposomes: coupling of homing devices to the ends of the polymeric chains combines effective target binding with long circulation times. Biochim Biophys Acta 1993; 1149: 180–184.Google Scholar
  9. 9.
    Zalipsky S, Puntambekar B, Boulikas P et al. Peptide attachment to extremities of liposomal surface grafted PEG chains: preparation oth the long circulating form of laminin peptapeptide, YIGSR. Bioconj Chem 1995; 6: 705–708.Google Scholar
  10. 10.
    DeFrees SA, Phillips L, Guo L et al. Sialyl lewis x liposomes as a multivalent ligand and inhibitor of e-selectin mediated cellular adhesion. J Am Chem Soc 1996; 118: 6101–6104.CrossRefGoogle Scholar
  11. n. Wang CY, Huang L. Highly efficient DNA delivery mediated by pH-sensitive immunoliposomes. Biochem 1989; 28:95o8-9514.Google Scholar
  12. 12.
    Wilschut J, Hoekstra D. Membrane Fusion. New York: Marcel Dekker, Inc., 1991.Google Scholar
  13. 13.
    Lasic DD. Liposomes: from Physics to Applications. Amsterdam: Elsevier, 1993: 575.Google Scholar
  14. 14.
    de Lima MCP, Hoekstra D. Liposomes, viruses, and membrane fusion. In: Philippot JR, Schuber F, eds. Liposomes as Tools in Basic Research and Industry. Boca Raton: CRC Press, 1994: 137–156.Google Scholar
  15. 15.
    Duzgunes N, Nir S. Liposomes as tools for elucidating the mechanism of membrane fusion. In: Philippot JR, Schuber F, eds. Liposomes as Tools in Basic Research and Industry. Boca Raton: CRC Press, 1994: 103–136.Google Scholar
  16. 16.
    Remy J-S, Sirlin C, Behr J-P. Gene transfer with cationic amphiphiles. In: Philippot JR, Schuber F, eds. Liposomes as Tools in Basic Research and Industry. Boca Raton: CRC Press, 1994: 159–170.Google Scholar
  17. 17.
    Lasic DD. Liposomes in Gene Delivery. Boca Raton: CRC Press, 1997: 32o.Google Scholar
  18. 18.
    Holland JW, Cullis PR, Madden TD. Poly(ethylene glycol)-lipid conjugates promote bilayer formation in mixtures of non-bilayer-forming lipids. Biochem 1996; 35: 2610–2617.CrossRefGoogle Scholar
  19. 19.
    Lasic DD. Liposomes within liposomes. Nature 1997; 387: 26–27.PubMedCrossRefGoogle Scholar
  20. 20.
    Slepushkin VA, Simoes S, Dazin P et al. Sterically stabilized pH-sensitive liposomes-intracellular delivery of aqueous contents and prolonged circulation in vivo. J Biol Chem 1997; 272: 2382–2388.PubMedCrossRefGoogle Scholar
  21. 21.
    Kirpotin D, Park JW, Hong K et al. Sterically stabilized anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro. Biochem 1997; 36: 66–75.CrossRefGoogle Scholar
  22. 22.
    Woodle MC, Raynaud FI, Dizik M et al. Oligonucleotide pharmacology and formulation: G3139 anti-BCL2 phosphorothioate in Stealth liposomes and gel implants. Nucleosides Nucleotides 1997; (in press).Google Scholar
  23. 23.
    Maruyama K, Kennel SJ, Huang L. Lipid composition is important for highly efficient target binding and retention of immunoliposomes. Proc Natl Acad Sci USA 1990; 87: 5744–5748.PubMedCrossRefGoogle Scholar
  24. 24.
    Mori A, Klibanov AL, Torchilin VP et al. Influence of the steric barrier of amphipathic poly)ethyleneglycol) and ganglioside GM1 on the circulation time of liposomes and on the target binding of immunoliposomes in vivo. FEBS Lett 1991; 284: 263–266.PubMedCrossRefGoogle Scholar
  25. 25.
    Mori A, Kennel SJ, Huang L. Immunotargeting of liposomes containing lipophilic antitumor prodrugs. Pharm Res 1993; 10507–514.Google Scholar
  26. 26.
    Ahmad I, Longenecker M, Samuel J et al. Antibody-targeted dilivery of doxorubicin entrapped in sterically stabilized liposomes can eradicate lung cancer in mice. Cancer Res 1993; 53: 1484–1488.PubMedGoogle Scholar
  27. 27.
    Zalipsky S, Newman MS, Puntambekar B et al. Model ligands linked to polymer chains on liposomal surfaces: application of a new functionalized polyethylene glycol lipid conjugate. Polym Mater Sci Eng 1993; 67: 519–520.Google Scholar
  28. 28.
    Vingerhoeds MH, Steerenberg PA, Hendriks JJGW et al. Immunoliposome-mediated targeting of doxorubicin to human ovarian carcinoma in vitro and in vivo. Br J Cancer 1996; 74: 1023–1029.PubMedCrossRefGoogle Scholar
  29. 29.
    Matthay KK, Abai AM, Cobb S et al. Role of ligand in antibody-directed endocytosis of liposomes by human T-leukemia cells. Cancer Res 1989; 49: 4879–4886.PubMedGoogle Scholar
  30. 30.
    Storm G, Nassander UK, Vingerhoeds MH et al. Antibody-targeted liposomes to deliver doxorubicin to ovarian cancer cells. J Lipo Res 1994; 4: 641–666.Google Scholar
  31. 31.
    Allen T, Hansen CB, Kao GY et al. Therapeutic opportunities for targeted liposomal drug delivery. Adv Drug Del Rev 1996; 21: 117–133.CrossRefGoogle Scholar
  32. 32.
    Parr MJ, Ansell SM, Choi LS et al. Factors influenceing the retention and chemical stability of poly(ethylene glycol)-lipid conjugates incorporated into large unilamellar vesicles. Biochim Biophys Acta 1994; 1195: 21–30.PubMedCrossRefGoogle Scholar
  33. 33.
    Holland JW, Hui C, Cullis PR et al. Poly(ethylene glycol)-lipid conjugates regulate the calcium-induced fusion of liposomes composed of phosphatidylethanolamine and phosphatidylserine. Biochem 1996; 35: 2618–2624.CrossRefGoogle Scholar
  34. 34.
    Kirpotin D, Hong K, Mullah N et al. Liposomes with detachable polymer coating: destabilization and fusion of dioleoylphophatidylethanolamine vesicles triggered by cleavage of surface-grafted poly(ethylene glycol). FEBS Lett 1996; 388: 115–118.PubMedCrossRefGoogle Scholar
  35. 35.
    Zalipsky S. Synthesis of an end-group functionalized polyethylene glycol-lipid conjugate for preparation of polymer-grafted liposomes. Bioconj Chem 1993; 4: 296–299.CrossRefGoogle Scholar
  36. 36.
    Haselgrubler T, Amerstorfer A, Schindler H et al. Synthesis and applications of a new poly(ethylene glycol) derivative for the crosslinking of amines with thiols. Bioconj Chem 1995; 6: 242–248.CrossRefGoogle Scholar
  37. 37.
    Zalipsky S. Functionalized poly(ethylene glycol)s for preparation of biologically relevant conjugates. Bioconj Chem 1995; 6: 150–165.Google Scholar
  38. 38.
    Park JW, Hong K, Carter P et al. Development of anti-p185HER2 immunoliposomes for cancer therapy. Proc Natl Acad Sci USA 1995; 92: 1327–1331.Google Scholar
  39. 39.
    Vingerhoeds MH, Haisma HJ, van Muigen M et al. A new application for liposomes in cancer therapy: immunoliposomes bearing enzymes (immuno-enzymosomes) for site-specific activation of prodrugs. FEBS Lett 1993; 336: 485–490.PubMedCrossRefGoogle Scholar
  40. 40.
    Oku N, Tokudome Y, Koike C et al. Liposomal arg-gly-asp analogs effectively inhibit metastatic B16 melanoma colonization in murine lungs. Life Sci 1996; 58: 2263–2270.PubMedCrossRefGoogle Scholar
  41. 41.
    Storm G, Vingerhoeds MH, Crommelin DJA et al. Immunoliposomes bearing enzymes (immuno-enzymosomes) for site-specific activation of anticancer prodrugs. Adv Drug Del Rev 1997; 24: 225–231.CrossRefGoogle Scholar
  42. 42.
    Vingerhoeds MH, Haisma HJ, Belliot SO et al. Immunoliposomes as enzyme-carriers (immuno-enzymosomes) for antibody-directed enzyme prodrug therapy (ADEPT): optimization of prodrug activating capacity. Pharm Res 1996; 13: 604–610.PubMedCrossRefGoogle Scholar
  43. 43.
    Trubetskoy VS, Narula J, Khaw BA et al. Chemically optimized antimyosin Fab conjuates with chelating polymers: importance of the nature of the protein-polymer single site covalent bond for biodistribution and infarction localization. Bioconj Chem 1993; 4: 251–255.CrossRefGoogle Scholar
  44. 44.
    Zalipsky S, Brandeis E, Newman MS et al. Long circulating, cationic liposomes containing amino-PEG-phosphatidylethanolamine. FEBS Lett 1994; 353: 71–74.PubMedCrossRefGoogle Scholar
  45. 45.
    Lee RJ, Low PS. Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J Biol Chem 1994; 269: 3198–3204.PubMedGoogle Scholar
  46. 46.
    Yamamura K, Kibbey MC, Jun SH et al. Effect of matrigel and laminin peptide YIGSR on tumor growth and metastasis. Semin Cancer Biol 1993; 4259–265.Google Scholar
  47. 47.
    Merwin JR, Noell GS, Thomas WL et al. Targeted delivery of DNA using YEE(Ga1NAcAH)3, a synthetic glycopeptide for the asialogylcoprotein receptor. Bioconj Chem 1994; 5612–620.Google Scholar
  48. 48.
    De Kruif J, Storm G, van Bloois L et al. Biosynthetically lipid-modified human scFv fragments from phage display libraries as targeting molecules for immunoliposomes. FEBS Lett, 1996; 399: 232–236.PubMedCrossRefGoogle Scholar
  49. 49•.
    Crommelin DJA, Herron J, Storm G. (Protein)-targeted delivery with particulate systems. In: Lee VHL, Hashida M, Mizushima YM, eds. Trends and Future Perspectives in Peptide and Protein Delivery. Harwood Academic Publishers, GmbH 1994:207–239Google Scholar
  50. 50.
    Li S, Gao, X, Son K, Sorgi F et al. DC-Chol lipid system in gene transfer. J Controlled Rel 1996; 39: 373–381.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Martin C. Woodle
  • Danilo D. Lasic
  • Gerrit Storm

There are no affiliations available

Personalised recommendations