Skip to main content

Part of the book series: Biotechnology Intelligence Unit ((BIOIU))

Abstract

For two decades the liposome has been portrayed as a classic example of a “magic bullet” concept. A targeting ligand, preferably a target-specific antibody, would be immobilized at the liposome surface, so it would specifically bind only to the target tissue.1 After iv administration, this immunoliposome would carry a drug for selective delivery to the disease site. Neither drug delivery to normal tissues nor harmful side effects would occur. However, numerous technical problems had to be solved before this concept became feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gregoriadis G, Neerunjun DE. Homing of liposomes to target cells. Biochem Biophys Res Commun 1975; 65: 537–544.

    Article  PubMed  CAS  Google Scholar 

  2. Kirby C, Clarke J, Gregoriadis G. Cholesterol content of small unilamellar liposomes controls phospholipid loss to high density lipoproteins in the presence of serum. FEBS Lett 1980; 111: 324.

    Article  PubMed  CAS  Google Scholar 

  3. Wolff B, Gregoriadis G. The use of monoclonal anti-thyl IgG1 for the targeting of liposomes to AKR-A cells in vitro and in vivo. Biochim Biophys Acta 1984; 802: 259–273.

    Article  PubMed  CAS  Google Scholar 

  4. Allen TM, Chonn A. Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Lett 1987; 223: 42–46.

    Article  PubMed  CAS  Google Scholar 

  5. Forum. Covalently attached polymers and glycans to alter the biodistribution of liposomes. Huang L, ed. J Liposome Res 1992; 2: 288–454.

    Google Scholar 

  6. Allen TM, Williamson P, Schlegel RA. Phosphatidylserine as a determinant of reticuloendothelial recognition of liposome models of the erythrocyte surface. Proc Natl Acad Sci USA 1988; 85: 8067–8071.

    Article  PubMed  CAS  Google Scholar 

  7. Torchilin VP, Khaw BA, Berdichevskiy VR, Klibanov AL, Haber E,.Smirnov VN. Complexes of liposomes with immunoglobuline and sialoglycoproteins. Bull Exp Biol Med (Russ) 1983; 95: 51–53.

    CAS  Google Scholar 

  8. Gabizon A, Papahadjopoulos D. Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc Natl Acad Sci USA 1988; 85: 6949–6953.

    Article  PubMed  CAS  Google Scholar 

  9. Maruyama K, Kennel SJ, Huang L. Lipid composition is important for highly efficient target binding and retention of immunoliposomes. Proc Natl Acad Sci USA 1990; 87: 5744–5748.

    Article  PubMed  CAS  Google Scholar 

  10. Beauchamp C, Gonilas SL, Menapace DP, Pizzo SV. A new procedure for the synthesis of polyethylene glycol-protein adducts; effects on function, receptor recognition, and clearance of superoxide dismutase, lactoferrin, and alphas macroglobulin. Anal Biochem 1983: 131: 25–33.

    Article  PubMed  CAS  Google Scholar 

  11. n. Ilium L, Davis SS, Muller RH, Mak E, West P. The organ distribution and circulation time of intraveneously injected colloidal carriers sterically stabilized with a block-copolymer-poloxamine 908. Life Science 1987; 40: 367–374.

    Article  Google Scholar 

  12. Sinha D, Karush F. Attachment to membranes of exogenous immunoglobulin conjugated to a hydrophobic anchor. Biochem Biophys Res Commun 1979; 90: 554–560.

    Article  PubMed  CAS  Google Scholar 

  13. Weissig V, Lasch J, Klibanov AL, Torchilin V. P. A new hydrophobic anchor for the attachment of proteins to liposomal membranes. FEBS Lett1986; 202: 86–90.

    Google Scholar 

  14. Martin FJ, Papahadjopoulos D. Irreversible coupling of immunoglobulin fragments to preformed vesicles. J Biol Chem 1982; 257: 286–288.

    PubMed  CAS  Google Scholar 

  15. Klibanov AL, Maruyama K, Beckerleg AM, Torchilin VP, Huang L. Activity of amphipathic polyethylene glycol 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunoliposome binding to target. Biochim Biophys Acta 1991; 1062: 42–148.

    Google Scholar 

  16. Mori A, Klibanov AL, Torchilin VP, Huang L. Influence of the steric barrier activity of amphipathic poly(ethyleneglycol) and ganglioside GM1 on the circulation time of liposomes and on the target binding of immunoliposomes in vivo. FEBS Lett 1991; 284: 263–266.

    Article  PubMed  CAS  Google Scholar 

  17. Klibanov AL, Khaw BA, Nossiff N, O’Donnel SM, Huang L, Slinkin MA, Torchilin VP. Targeting of macromolecular carriers and liposomes by monoclonal antibodies against heart myosin heavy chains. Am J Physiol 1991; 261 (suppl.): 6o - 65.

    Google Scholar 

  18. Torchilin VP, Klibanov AL, Huang L, O’Donnell S, Nossiff ND, Khaw BA. Targeted accumulation of polyethylene glycol-coated immunoliposomes in infarcted rabbit myocardium. FASEB J 1992; 6: 2716–2719.

    PubMed  CAS  Google Scholar 

  19. Trubetskaya OV, Trubetskoy VS, Domogatsky SP, Rudin AV, Popov NV, Danilov SM, Nikolayeva MN, Klibanov AL, Torchilin VP. Monoclonal antibody to human endothelial cell surface internalization and liposome delivery in cell culture. FEBS Lett 1988; 228: 131–134.

    Article  PubMed  CAS  Google Scholar 

  20. zo. Loughrey HC, Bally MB, Cullis PR. A non-covalent method of attaching antibodies to liposomes. Biochim Biophys Acta 1987; 901: 157–160.

    Article  Google Scholar 

  21. Ahmad I, Allen T. M. Antibody-mediated specific binding and cytotoxicity of liposome-entrapped doxorubicin to lung cancer cells in vitro. Cancer Res 1992; 52: 4817–4820.

    PubMed  CAS  Google Scholar 

  22. Ahmad I, Longenecker M, Samuel J, Allen TM. Antibody-targeted delivery of doxorubicin entrapped in sterically-stabilized liposomes can eradicate lung cancer in mice. Cancer Res 1993; 53: 1484–1488.

    PubMed  CAS  Google Scholar 

  23. Allen T, Agrawal AK, Ahmad I, Hansen CB, Zalipsky S. Antibody-mediated targeting of long circulating (StealthR) liposomes. J Liposome Res 1993; 4: 1–25.

    Article  Google Scholar 

  24. Klibanov AL, Huang L. Long-circulating liposomes: development and perspectives. J Liposome Res 1992; 2: 321–334.

    Article  CAS  Google Scholar 

  25. Blume G, Cevc G, Crommelin MDJA et al. Specific targeting with polyethylene glycol liposomes: coupling of homing devices to the ends of the polymeric chains combines effective target binding with long circulation times. Biochim Biophys Acta 1993; 1149: 180–184.

    Article  PubMed  CAS  Google Scholar 

  26. Needham D, Hristova K, McIntosh TJ, Dewhirst M, Wu N, Lasic DD. Polymer-grafted liposomes: physical basis for the “stealth” properties. J Liposome Res 1992; 2: 411–430.

    Article  CAS  Google Scholar 

  27. Lasic D. Sterically stabilized vesicles. Angew Chem Int Ed Engl 1994; 33: 1685–1698.

    Article  Google Scholar 

  28. Torchilin VP, Omelyamenko VG, Papisov MI, Bogdanov AA, Trubetskoy VS, Herron JN, Gentry CA. Polyethylene glycol on the liposome surface-on the mechanism of polymer-coated liposome longevity. Biochim Biophys Acta 1994; 1195: 11–20.

    Article  PubMed  CAS  Google Scholar 

  29. Parr MJ, Ansell SM, Choi LS, Cullis PR. Factors influencing the retention and chemical stability of polyethylene glycol conjugates incorporated into large unilamellar vesicles. Biochim Biophys Acta 1994; 1195: 21–30.

    Article  PubMed  CAS  Google Scholar 

  30. Blume G, Cevc G. Molecular mechanism of the lipid vesicle longevity in vivo. Biochim Biophys Acta 1993; 1146: 157–168.

    Article  PubMed  CAS  Google Scholar 

  31. Maruyama K, Yuda T, Okamoto A, Ishikura C, Kojima S, Iwatsuru M. Effect of molecular weight in amphipathic polyethyleneglycol on prolonging the circulation time of large unilamellar liposomes. Chem Pharm Bull 1991; 39: 1620–1622.

    Article  PubMed  CAS  Google Scholar 

  32. Kenworthy AK, Hristova K, Needham D, Macintosh TJ. Range and magnitude of the steric pressure between bilayers containing phospholipids with covalently attached polyethylene glycol. Biophys J 1995; 68: 1921–1936.

    Article  PubMed  CAS  Google Scholar 

  33. Torchilin VP, Papisov MI. Why do polyethylene glycol-coated liposmes circulate so long? J Lipos Res 1994; 4: 725–739.

    Article  Google Scholar 

  34. Bogdanov AA, Klibanov AL, Torchilin VP. Protein immobilization on the surface of liposomes via carbodiimide activation in the presence of N-hydroxysulfosuccinimide. FEBS Lett 1988; 231: 381–384.

    Article  PubMed  CAS  Google Scholar 

  35. Chua MM, Fan ST, Karush F. Attachment of immunoglobulin to liposomal membrane via protein carbohydrate. Biochim Biophys Acta 1984; 800: 291–300.

    Article  PubMed  CAS  Google Scholar 

  36. Rodwell JD, Alvarez VL, Lee C et al. Site-specific covalent modification of monoclonal antibodies: in vitro and in vivo evaluations. Proc Nail Acad Sci USA 1986; 83: 2632–2636.

    Article  CAS  Google Scholar 

  37. Kaneko T, Willner D, Monkovic I et al. New hydrazone derivatives of adriamycin and their immunoconjugates-a correlation between acid stability and cytotoxicity. Bioconj Chemistry 1991; 2: 133–141.

    Article  CAS  Google Scholar 

  38. Loughrey HC, Choi LS, Cullis PR, Bally MB. Optimized procedures for the coupling of proteins to liposomes. J Immunol Methods 1990; 132: 25–35.

    Article  PubMed  CAS  Google Scholar 

  39. Klibanov AL. Targeting of immunoliposomes in vivo. Fifth Princeton Liposome Conference, Princeton, NJ, 1993.

    Google Scholar 

  40. Klibanov AL, Serbina N, Torchilin VP, Huang L. Attachment of ligands to liposomes via PEG spacer for prolonged liposome circulation and targeting. J Liposome Res 1996; 6: 195–196.

    Google Scholar 

  41. Maruyama K, Holmberg E, Kennel SJ, Klibanov A, Torchilin VP, Huang L. Characterization of in vivo immunoliposome targeting to pulmonary endothelium. J Pharm Sci 1990; 79 (11): 978–984.

    Article  PubMed  CAS  Google Scholar 

  42. Holmberg E, Maruyama K, Litzinger DC, Wright S, Davis M, Kabalka GW, Kennel SJ, Huang L. Highly efficient immunoliposomes prepared with a method which is compatible with various lipid compositions. Biochem Biophys Res Commun 1989; 165: 1272–1278.

    Article  PubMed  CAS  Google Scholar 

  43. Maruyama K, Takizawa T, Yuda T, Kennel SI, Huang L, Iwatsuru M. Targetability of novel immunoliposomes modified with amphipathic polyethylene glycols conjugated at their distal terminals to monoclonal antibodies. Biochim Biophys Acta 1995; 1234: 74–80.

    Article  PubMed  Google Scholar 

  44. Aragnol D, Leserman L. Immune clearance of liposomes inhibited by an anti-Fc receptor antibody in vivo. Proc Natl Acad Sci USA 1986; 83: 2699–2703.

    Article  PubMed  CAS  Google Scholar 

  45. Klibanov AL, Muzykantov VR, Ivanov NN, Torchilin VP. Evaluation of quantitative parameters of the interaction of antibody-bearing liposomes with target antigens. Anal Biochem 1985; 150: 251–257.

    Article  PubMed  CAS  Google Scholar 

  46. Huang L, Huang A, Kennel SJ. Monoclonal antibody covalently coupled with fatty acid. J Biol Chem 1980; 255: 8015–8018.

    PubMed  CAS  Google Scholar 

  47. Allen TM, Hansen C, Martin F et al. Liposomes containing synthetic lipid derivatives of poly(ethyleneglycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1991; 1066: 29–36.

    Article  PubMed  CAS  Google Scholar 

  48. Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 1990; 268: 235–237.

    Article  PubMed  CAS  Google Scholar 

  49. Gregoriadis G. Liposomes as immunological adjuvants for peptide and protein antigens. In: Gregoriadis G, Florence AT, Patel H, eds. Liposomes in Drug Delivery. Langhorn PA USA: Harwood Academic Publishers, 1993: 77–94.

    Google Scholar 

  50. Katre NV, Immunogenicity of recombinant IL-2 modified by covalent attachment of polyethylene glycol. J Immunol 1990; 144: 209–213.

    PubMed  CAS  Google Scholar 

  51. Becker W. Goldenberg DM. Wolf F. The use of monoclonal antibodies and antibody fragments in the imaging of infectious lesions. Seminars in Nuclear Medicine 1994; 24: 142–53.

    Article  PubMed  CAS  Google Scholar 

  52. Torchilin VP, Shtilman MI, Trubetskoy VS, Whiteman K, Milstein A. M. Amphiphilic vinyl polymers effectively prolong liposome circulation time in vivo. Biochim Biophys Acta 1994; 1195: 181–184.

    Article  PubMed  CAS  Google Scholar 

  53. Maruyama K, Okuizumi S, Ishida O et al. Phosphatidyl polyglycerol prolongs liposome circulation in vivo. International J Pharmaceutics 1994; 111: 103–107.

    Article  CAS  Google Scholar 

  54. Woodle MC, Engbers CM, Zalipsky S. New amphipathic polymer lipid conjugates forming long circulating reticuloendothelial system-evading liposomes. Bioconjugate Chemistry 1994; 5: 493–496.

    Article  PubMed  CAS  Google Scholar 

  55. Oku N, Namba Y, Okada S. Tumor accumulation of novel RES-avoiding liposomes. Biochim Biophys Acta 1992; 1126: 255–260.

    Article  PubMed  CAS  Google Scholar 

  56. Park YS, Maruyama K, Huang L. Some negatively charged phospholipid derivatives prolong their liposome circulation in vivo. Biochim Biophys Acta 1992; 1108: 257–260.

    Article  PubMed  CAS  Google Scholar 

  57. Waldmann TA. Anti-IL-2 receptor monoclonal antibody (anti-Tac) treatment of T-cell lymphoma. Important Advances in Oncology 1994: 131–141.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klibanov, A.L. (1998). Antibody-Mediated Targeting of PEG-Coated Liposomes. In: Woodle, M.C., Storm, G. (eds) Long Circulating Liposomes: Old Drugs, New Therapeutics. Biotechnology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22115-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22115-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22117-4

  • Online ISBN: 978-3-662-22115-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics