Skip to main content

Local Immunosuppression of Rat Cardiac, Liver, and Small Bowel Allografts

  • Chapter
Local Immunosuppression of Organ Transplants

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

  • 52 Accesses

Abstract

Allotransplantation plays a critical role in the treatment of patients with end-stage renal, cardiac, hepatic and pulmonary diseases. Although systemic administration of immunosuppressive agents prevents graft rejection, toxic side effects cause the dysfunction of vital organs including kidney, liver and bone marrow.1–3 In addition, current immunosuppression is associated with an increased incidence of infection, diabetes, hypertension and malignancy in transplant recipients. To overcome these problems, different approaches are under consideration: (1) improvement of immunosuppressive protocols by development of new nontoxic drugs;4 (2) application of synergistic drug combinations to reduce individual drug doses, hence to decrease toxic side effects;5 (3) donor or graft pretreatment to reduce graft-versus-host immune response for small bowel transplantation6 and (4) local delivery of immunosuppressive agents to directly block intragraft events with reduction of systemic drug concentrations.7

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett WM and Pulliam JP. Cyclosporine nephrotoxicity. Ann Int Med 1983; 99 (6): 851.

    Article  PubMed  CAS  Google Scholar 

  2. Jolivel J, Cowan KM, Curt GA et al. The pharmacology and clinical use of metho- 8. trexate. New Engl J Med 1983; 309 (18): 1094.

    Article  Google Scholar 

  3. Levine LA, Jarrard DF. Treatment of cyclo- 9. phosphamide induced-hemorrhagic cystitis with intravesical corboprost tromethamine. J Urology 1993; 149 (4): 719.

    CAS  Google Scholar 

  4. Kahan BD. New immunosuppressive drugspharmacologic approaches to alter immunoregulation. Therapeutic Immunology 1994; 1: 33.

    PubMed  CAS  Google Scholar 

  5. Kahan BD, Tejpal N, Gibbons-Stubbers S et al. The synergistic interactions in vitro and in vivo of brequinar sodium with cyclosporine or rapamycin alone and in triple combination. Transplantation 1993; 55 (4): 894.

    Article  PubMed  CAS  Google Scholar 

  6. Wang M, Qu X, Stepkowski SM et al. Beneficial effect of graft perfusion with anti-T cell receptor monoclonal antibodies on survival of small bowel allografts in rat recipients treated with brequinar alone or in combination with cyclosporine and sirolimus. Transplantation 1996; 61 (3): 458.

    Article  PubMed  CAS  Google Scholar 

  7. Gruber SA. The case for local immunosuppression. Transplantation 1992; 54 (1): 1.

    Article  PubMed  CAS  Google Scholar 

  8. Shoskes DA, Wood KJ. Indirect presentation of MHC antigens in transplantation. Immunol Today 1994; 15 (1): 32.

    Article  PubMed  CAS  Google Scholar 

  9. Sherman LA, Chattopadhyay S. The molecular basis of allorecognition. Annu Rev Immunol 1993; 11: 385.

    Article  PubMed  CAS  Google Scholar 

  10. Ruth M. Antigen receptors on B lymphocytes. Annu Rev Immunol 1992; 10: 97.

    Article  Google Scholar 

  11. Springer TA. Adhesion receptors of the immune system. Nature 1990; 346 (6283): 425.

    Article  PubMed  CAS  Google Scholar 

  12. Miyaijma A, Kitamura T, Harada N et al. Cytokine receptors and signal transduction. Annu Rev Immunol 1992; 10: 295.

    Article  Google Scholar 

  13. Takahata N, Satta Y, Klein J. Polymorphism and balancing selection at major histocompatibility complex loci. Genetic 1992; 130 (4): 925.

    CAS  Google Scholar 

  14. Bjorkman PJ, Saper MA, Samraoui B et al. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 1987; 329 (6139): 506.

    Article  PubMed  CAS  Google Scholar 

  15. Brown JH, Jardetzky TS, Gorga JC et al. The three-dimensional structure of the human class II histocompatibility HLA-DR1. Nature 1993; 364 (6432): 33.

    Article  PubMed  CAS  Google Scholar 

  16. Chicz RM, Urban RG, Lane WS et al. Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogenous in size. Nature 1992; 358 (6389): 764.

    Article  PubMed  CAS  Google Scholar 

  17. Hunt DF, Michel H, Dickinson TA et al. Peptides presented to immune system by the murine class II major histocompatibility complex molecule I-Ad. Science 1992; 256 (5065): 1817.

    Article  PubMed  CAS  Google Scholar 

  18. Suciu-Foca N, Reed E, D’agati VD et al. Soluble HLA-antigens, anti-HLA antibodies and anti-idiotypic antibodies in the circulation of renal transplant recipients. Transplantation 1991; 51 (3): 593.

    Article  PubMed  CAS  Google Scholar 

  19. Watschinger B, Gallon L, Carpenter CB et al. Mechanisms of allorecognition: recognition by in vivo-primed T cells of specific major histocompatibility complex polymorphisms presented as peptides by responder antigen-presenting cells. Transplantation 1994; 57 (4): 572.

    PubMed  CAS  Google Scholar 

  20. Parker KE, Dalchau R, Fowler VJ et al. Stimulation of CD4 T lymphocytes by allogeneic MHC peptides presented on autologous antigen presenting cells: evidence of the indirect pathway of allorecognition in some strain combinations. Transplantation 1992; 53 (4): 918.

    Article  PubMed  CAS  Google Scholar 

  21. Germain RN, Margulies DH. The biochemistry and cell biology of antigen processing and presentation. Annu Rev Immunol 1993; 11: 403.

    Article  PubMed  CAS  Google Scholar 

  22. Rammensee HG, Falk K, Rotzschke. Peptides naturally presented by MHC class I molecules. Annu Rev Immunol 1993; 11: 213.

    Article  PubMed  CAS  Google Scholar 

  23. Goldberg AL and Rock KL. Proteolysis, protosomes and antigen presentation. Nature 1992; 357 (6377): 375.

    Article  PubMed  CAS  Google Scholar 

  24. Schumacher TN, Kantesaria DV, Heemels MT et al. Peptide length and sequence specificity of the mouse TAP-1/TAP-2 trans-locator. J Exp Med 1994; 179 (2): 533.

    Article  PubMed  CAS  Google Scholar 

  25. Weiss A, Littman DR. Signal transduction by lymphocyte antigen receptors. Cell 1994; 76 (2): 263.

    Article  PubMed  CAS  Google Scholar 

  26. Freeman GJ, Gribben JG, Boussiotis VA et al. Cloning of B7–2: A CTLA-4 counter-receptor that costimulates human T cell proliferation. Science 1993; 262 (5135): 909.

    Article  PubMed  CAS  Google Scholar 

  27. Weiss A. Molecular and genetic insights into T cell antigen receptor structure and function. Annu Rev Genet 1991; 25: 487.

    Article  PubMed  CAS  Google Scholar 

  28. Stepkowski SM, Goto S, Ito T et al. Prolongation of heterotopic heart allograft survival by local delivery of continuous low-dose cyclosporine therapy. Transplantation 1989; 47 (1): 17.

    Article  PubMed  CAS  Google Scholar 

  29. Jordan ML. Prostoglandins and suppression of the allograft response. Transplant Sci 1991; 1: 55.

    Google Scholar 

  30. Strom TB, Carpenter C. Prostoglandins as an effective anti-rejection therapy in rat renal allograft recipients. Transplantation 1983; 35: 279.

    Article  PubMed  CAS  Google Scholar 

  31. Adams MB, Enisoprost Transplant Study Group. Enisoprost in renal transplantation. Transplantation 1992; 53: 338.

    Google Scholar 

  32. Barone D, Salvetti L, Biachi G et al. The molecular site of action of defibrotide. Pharmacol Res 1992; 25: 123.

    Google Scholar 

  33. Ferraresso M, Rigotti P, Stepkowski SM et al. Immunosuppressive effects of defibrotide. Transplantation 1993; 56: 928.

    Article  PubMed  CAS  Google Scholar 

  34. Stepkowski SM, Chen H, Daloze P et al. Rapamycin, a potent immunosuppressive drug for vascularized heart, kidney, and small bowel transplantation in the rat. Transplantation 1991; 51: 22.

    Article  PubMed  CAS  Google Scholar 

  35. Yano K, Fukuda Y, Sumimoto R et al. Suppression of liver allograft rejection by administration of 15-deoxyspergualin: comparison of administration via the hepatic artery, portal vein, or systemic circulation. Transp Int 1994; 7 (3): 149.

    CAS  Google Scholar 

  36. Stepkowski SM, Tu Y, Condon T et al. Blocking of heart allograft rejection by intracellular adhesion molecule antisense oligonucleotides alone or in combination with other immunosuppressive modalities. J Immunol 1994; 153: 5336.

    PubMed  CAS  Google Scholar 

  37. Levy AE, Alexender JW. Administration of intragraft interleukin-4 prolongs cardiac allograft survival in rats treated with donor-specific transfusion/cyclosporine. Transplantation 1995; 60: 405.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, Me., Stepkowski, S.M., Kahan, B.D. (1996). Local Immunosuppression of Rat Cardiac, Liver, and Small Bowel Allografts. In: Local Immunosuppression of Organ Transplants. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22105-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22105-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22107-5

  • Online ISBN: 978-3-662-22105-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics