Immunomodulation of Islet Allografts with Genetically Modified Muscle Cells

  • Ming Yu
  • A. Alfred Chahine
  • Christian Stoeckert
  • Henry T. Lau
Part of the Medical Intelligence Unit book series (MIU.LANDES)


Localized perigraft delivery of immunosuppressive molecules can prolong islet allograft survival. This finding rests on three concepts: (1) immune recognition of an allograft can be modulated at the hostwwwwgraft interface; (2) immunosuppressive molecules can be delivered to the perigraft site by genetic engineering of carrier cells distinct from the islet allograft and (3) cotransplantation of genetically engineered myoblast carrier cells secreting immunosuppressive molecules with pancreatic islet cells can promote islet allograft survival.


Allograft Survival Costimulatory Signal Mixed Lymphocyte Culture Carrier Cell Muscle Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Klein J. Immunology, The science of selfnonself discrimination. New York: Wiley, 1982.Google Scholar
  2. 2.
    Lafferty KJ, Prowse SJ, Simeonovie CJ. Immunology of tissue transplantation: a return to the passenger leukocyte concept. Ann Rev Immunol 1983; 1: 143.CrossRefGoogle Scholar
  3. 3.
    LaRosa FG, Talmage DW. The abrogation of thyroid allograft rejection by culture in acid medium. Transplantation 1987; 44 (4): 592.CrossRefGoogle Scholar
  4. 4.
    LaRosa FG, Talmage DW. The failure of a major histocompatibility antigen to stimulate a thyroid allograft reaction after culture in oxygen. J Exp Med 1983; 157: 898.CrossRefGoogle Scholar
  5. 5.
    Lechler RI, Batchelor JR. Restoration of immunogenicity to passenger cell-depleted kidney allografts by the addition of donor strain dendritic cells. J Exp Med 1982; 155: 31.PubMedCrossRefGoogle Scholar
  6. 6.
    Lau H, Reemtsma K, Hardy MA. Prolongation of rat islet allograft survival by direct ultraviolet irradiation of the graft. Science 1984; 223: 607.PubMedCrossRefGoogle Scholar
  7. 7.
    Faustman D, Hauptfeld V, Lacy P et al. Prolongation of murine islet allograft survival by pre-treatment of islets with antibody directed to Ia determinants. Proc Natl Acad Sci USA 1981; 78 (8): 5156.PubMedCrossRefGoogle Scholar
  8. 8.
    Shoskes DA, Wood KJ. Indirect presentation of MHC antigens in transplantation. Immunol Today 1994; 15: 32.PubMedCrossRefGoogle Scholar
  9. 9.
    Van Seventer GA, Shimizu Y, Horgan KJ et al. The LFA-1 ligand ICAM-1 provides an important co-stimulatory signal for T cell receptor-mediated activation of resting T cells. J Immunol 1990; 144: 4579.PubMedGoogle Scholar
  10. 10.
    Damle NK, Klussman K, Linsley PS et al. Differential co-stimulatory effects of adhesion molecules B7, ICAM-1, LFA-3, and VCAM-1 on resting and antigen-primed CD4’ T lymphocytes. J Immunol 1992; 148: 1985.PubMedGoogle Scholar
  11. 11.
    Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992; 258: 607.PubMedCrossRefGoogle Scholar
  12. 12.
    O’Keefe SJ, Tamura J, Kincaid RL et al. FK-506 and CsA-sensitive activation of the interleukin-2 promoter by calcineurin. Nature 1992; 357: 692.PubMedCrossRefGoogle Scholar
  13. 13.
    Guinan EC, Gribben JG, Boussiotis VA et al. Pivotal role of the B7:CD28 pathway in transplantation tolerance and tumor immunity. Blood 1994; 84 (10): 3261.PubMedGoogle Scholar
  14. 14.
    June CH, Ledbetter JA, Linsley PS et al. Role of the CD28 receptor in T cell activation. Immunol Today 1990; 11: 211.PubMedCrossRefGoogle Scholar
  15. 15.
    Gimmi CD, Freeman GJ, Bribben JG et al. B cell surface antigen B7 provides a co-stimulatory signal that induces T cells to proliferate and secrete interleukin 2. Proc Natl Acad Sci USA 1991; 88: 6575.PubMedCrossRefGoogle Scholar
  16. 16.
    Walunas TI, Lenschow DJ, Bakker CY et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1994; 1: 405.PubMedCrossRefGoogle Scholar
  17. 17.
    Kelso A. Thl and Th2 subsets: paradigms lost? Immunol Today 1995; 16 (8): 374.PubMedCrossRefGoogle Scholar
  18. 18.
    Isobe M, Yagita H, Okomura K et al. Specific acceptance of cardiac allograft after treatment with antibodies to ICAM-1 and LFA-1. Science 1992; 225: 1125.CrossRefGoogle Scholar
  19. 19.
    Paul LC, Davidoff A, Benediktsson H et al. The efficacy of LFA-1 and VLA-4 antibody treatment in rat vascularized cardiac allograft rejection. Transplantation 1993; 55 (5): 1196.PubMedCrossRefGoogle Scholar
  20. 20.
    Burlingham WJ. Prospects for anti-idiotype therapy in transplantation. In: Burlingham WJ, ed. Monoclonal antibody therapy in transplantation. Boca Raton: CRC, 1992: 101.Google Scholar
  21. 21.
    Schwartz RH. T cell anergy. Sci Am 1993; 269: 62.PubMedCrossRefGoogle Scholar
  22. 22.
    Schwartz RH. Co-stimulation of T lymphocytes: The role of CD28, CTLA-4, and B7/ BB1 in interleukin-2 production and immunotherapy. Cell 1992; 71: 1065.PubMedCrossRefGoogle Scholar
  23. 23.
    Linsley PS, Brady W, Urnes M et al. CTLA4 is a second receptor for the B cell activation antigen B7. J Exp Med 1991; 174: 561.PubMedCrossRefGoogle Scholar
  24. 24.
    Tan P, Anasetti C, Hansen JA et al. Induction of alloantigen-specific hyporesponsiveness in human T lymphocytes by blocking interaction of CD28 with its natural ligand B7/BB1. J Exp Med 1993; 177: 165.PubMedCrossRefGoogle Scholar
  25. 25.
    Lenschow DJ, Zeng Y, Thistlethwaite JR et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4Ig. Science 1992; 257: 789.PubMedCrossRefGoogle Scholar
  26. 26.
    Turka LA, Linsley PS, Lin H et al. T cell activation by the CD28 ligand B7 is required for cardiac allograft rejection in vivo. Proc Natl Acad Sci USA 1992; 89: 1 1102.Google Scholar
  27. 27.
    Wahl SM. Transforming growth factor beta (TGF-ß) in inflammation: a cause and a cure. J Clin Immunol 1992; 12 (2): 61.PubMedCrossRefGoogle Scholar
  28. 28.
    Roberts AB, Sporn MB. Physiological actions and clinical applications of transforming growth factor-(i (TGF-ß). Growth Factors 1993; 8: 1.PubMedCrossRefGoogle Scholar
  29. 29.
    Kehrl JH, Wakefield LM, Roberts AB et al. Production of transforming growth factor ß by human T lymphocytes and its potential role in the regulation of T cell growth. J Exp Med 1986; 163: 1037.PubMedCrossRefGoogle Scholar
  30. 30.
    Wahl SM, Allen JB, Costa GL et al. Reversal of acute and chronic synovial inflammation by anti-transforming growth factor-ß. J Exp Med 1993; 177: 225.PubMedCrossRefGoogle Scholar
  31. 31.
    Simon RH, Engelhardt JF, Yan Y et al. Adenovirus-mediated transfer of the CFTR gene to lung of nonhuman primates: toxicity study. Hum Gene Ther 1993; 4: 771.PubMedCrossRefGoogle Scholar
  32. 32.
    Yang Y, Nunes FA, Berencsi K et al. Inactivation of E2a in recombinant adenoviruses improves the prospect for gene therapy in cystic fibrosis. Nature Genet 1993; 7: 362.CrossRefGoogle Scholar
  33. 33.
    Barr E, Leiden JM. Systemic delivery of recombinant proteins by genetically modified myoblaste. Science 1991; 254: 1507.PubMedCrossRefGoogle Scholar
  34. 34.
    Jiao S, Gurevich V, Wolff JA. Long-term correction of rat model of Parkinson’s disease by gene therapy. Nature 1993; 362: 450.PubMedCrossRefGoogle Scholar
  35. 35.
    Koh GY, Klug MG, Soonpaa MH et al. Differentiation and long-term survival of C2C12 myoblast grafts in heart. J Clin Invest 1993; 92: 1548.PubMedCrossRefGoogle Scholar
  36. 36.
    Chahine AA, Yu M, McKernan MM et al. Immunomodulation of pancreatic islet allografts in mice with CTLA4Ig-secreting muscle cells. Transplantation 1995; 59: 1313.PubMedGoogle Scholar
  37. 37.
    Cantini M, Massimino ML, Catani C et al. Gene transfer into satellite cell from regenerating muscle: Bupivacaine allows 13-gal transfection and expression in vitro and in vivo. In Vitro Cell Dev Biol 1994; 30A: 131.CrossRefGoogle Scholar
  38. 38.
    Rando TA, Blau HM. Primary mouse myoblast purification, characterization and transplantation for cell mediated gene therapy. J Cell Biol 1994; 125: 127 5.Google Scholar
  39. 39.
    Koh GY, Kim SJ, King MG et al. Targeted expression of transforming growth factor ßl in intracardiac grafts promotes vascular endothelial cell DNA synthesis. J Clin Invest 1995; 95: 114.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Ming Yu
  • A. Alfred Chahine
  • Christian Stoeckert
  • Henry T. Lau

There are no affiliations available

Personalised recommendations