Skip to main content

IL-10 In Human Leishmaniasis

  • Chapter
Interleukin-10

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 122 Accesses

Abstract

Leishmaniasis is endemic in many tropical and subtropical countries. It is estimated that worldwide 400 million individuals are exposed to leishmania infection, with an annual incidence of 600,000 and a prevalence of 12 million.1 The disease is caused by protozoa of the genus leishmania (kinetoplastida: tripanosomatidae) that are transmited to humans by the bite of infected phlebotomine sand flies. With the exception of India, where man is the main target for leishmania infection, leishmaniasis is a zoonotic disease and humans are only incidental hosts in the parasite’s life cycle. The clinical manifestations of leishmaniasis are variable and are related, in part, to the strain of the infecting agent, the environment and the host immunological response. Four different clinical forms of leishmaniasis are well characterized: cutaneous leishmaniasis, mucosal leishmaniasis, diffuse cutaneous leishmaniasis and visceral leishmaniasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Desjeux P. Human leishmaniasis: epidemiology and public health aspects. Wld Hlth Statist Quant 1992; 45: 267–75.

    CAS  Google Scholar 

  2. Chang KP, Kong D, Bray RS. Biology of leishmania & leishmaniasis. In K.P. Chang & R.S. Bray, (Ed) Leishmaniasis. (1985) Elsevier, London, 1–30.

    Google Scholar 

  3. Sacks DL, Perkins PV. Identification of an infection stage of leishmania promastigotes. Science 1984; 223: 1417–22.

    Article  PubMed  CAS  Google Scholar 

  4. Pearson RD, Steigbebel RT. Mechanisms of lethal effect of human serum upon leishmania donovani. J Immunol 1980; 125: 2195–2211.

    PubMed  CAS  Google Scholar 

  5. Bryceson ADM, Preston PM, Bray RS et al. Experimental cutaneous leishmaniasis. II. Effects of immunosuppression and antigenic competition on the course of infection with Leishmania enrietti in the guinea-pig. Clin Exp Immunol 1972; 10: 305–35.

    PubMed  CAS  Google Scholar 

  6. Howard JG, Hale C, Liew FY Immunological regulation of experimental cutaneous leishmaniasis. III. The nature and significance of specific suppression of cell-mediated immunity. J Exp Med 1980; 152: 594–607.

    Article  PubMed  CAS  Google Scholar 

  7. Franke ED, McGreevy PB, Katz SP et al. Growth cycle-dependent generation of complement resistant leishmania promastigotes. J Immunol 1985; 134: 2713–19.

    PubMed  CAS  Google Scholar 

  8. Puentes SM, Da Silva RP, Sacks DL et at. Serum resistance of metacydic stage leishmania major promastigote is due to release of C5b-9. J Immunol 1990; 145: 4311–16.

    PubMed  CAS  Google Scholar 

  9. Soares NM, Carvalho EM, Pinto RT et al. Induction of complement sensitivity in Leishmania amazonensis metacyclic promastigotes by protease treatment but not by specific antibodies. Parasitol Res 1993; 79: 340–42.

    Article  PubMed  CAS  Google Scholar 

  10. Murray HW, Rabin BY, Rothermel CD. Killing of intracellular leishmania donovani by lymphokine stimulated human mononuclear phagocytes. Evidence that in IFNg is the activating lymphokine. J Clin Invest 1983; 72: 1506–10.

    Article  PubMed  CAS  Google Scholar 

  11. Nathan CF, Murray HW, Wiebe ME et al. Identification of IFN-y as the lymphokine that activates human microbicidal oxidative metabolism and antimicrobicidal activity. J Exp Med 1983; 158: 670–89.

    Article  PubMed  CAS  Google Scholar 

  12. Liew FY, Millett S, Parkinson C et al. Macrophage killing of leishmania parasite in vivo is mediated by nitric oxide from L. arginine. J Immunol 1990; 144: 4794–97.

    PubMed  CAS  Google Scholar 

  13. Chang KP, Chanduri G, Fong D. Molecular determinants of leishmania virulence. Annu Rev Microbiol 1990; 44: 499–29.

    Article  PubMed  CAS  Google Scholar 

  14. Engelhorn S, Brucknery A, Remold HG. A soluble factor produced by inoculation of human monocytes with leishmania donovani suppresses y Interferon dependent monocyte activation. J Immunol 1990; 145: 2662–68.

    PubMed  CAS  Google Scholar 

  15. Hall BF, Joiner KA. Strategies of obligate intracellular parasites for evading host de- fenses. Immunol Today 1991; 12: A22–27.

    Article  PubMed  CAS  Google Scholar 

  16. Titus RG, Ribeiro JMC. Salivary gland lysates from the sandfly Lutzomya longipalpis enhance leishmania infectivity. Science 1988; 239: 1306–08.

    Article  PubMed  CAS  Google Scholar 

  17. Theodos GM, Nong YH, Remold HG et al. Salivary gland material from the sandfly Lutzomya longipalpis has an inhibitory effect on macrophage function in vitro. Parasite Immunol, in press.

    Google Scholar 

  18. Carvalho EM, Barrai A, Pedral-Sampaio D et al. Immunological markers of clinical evolution in children recently infected with Leishmania donovani chagasi. J Infect Dis 1992; 165: 535–40.

    Article  PubMed  CAS  Google Scholar 

  19. Milon G, Titus RG, Cerottini JC et al. High sequency of leishmania major specific L3T4+ T cells in susceptible BALB/c mice as compared to resistant CBA mice. J Immunol 1986; 136: 1467–73.

    PubMed  CAS  Google Scholar 

  20. Farrel JP, Muller I, Louis JA. A role of Lyt -2+ T cells in resistance to cutaneous leishmaniasis in immunized mice. J Immunol 1989; 142: 2052–59.

    Google Scholar 

  21. Hill JO, Awwad M, North RJ. Elimination of CD4 suppressor T cell from susceptible BALB/c mice releases CD8+ lymphocytes to mediate protective immunity against leishmania. J Exp Med 1989; 169: 181–27.

    Article  Google Scholar 

  22. Conceiçâo-Silva F, Bertho A, Nogueira R et al. Leishmania braziliensis reactive T cells populations derived from peripheral blood of human American cutaneous leishmaniasis. CD4/CD8 ratio determined by monoclonal antibodies using the flow cytometry analysis. Mem Inst Oswaldo Cruz 1990; 84: 92–8.

    Google Scholar 

  23. Scott P, Pearce E, Cheever AW et al. The role of T cell subsets and cytokines in the regulation of injection. Immunology Today 1991; 346–48.

    Google Scholar 

  24. Heinzel FP, Sadick MD, Mutha SS et al. Production of IFN-g, IL-2, IL-4 and IL-10 by CD4+ lymphocytes in vivo during healing and progressive immune leishmaniasis. Proc Nat! Acad Sci USA 1991; 80: 7011–15.

    Article  Google Scholar 

  25. Heinzel FP, Sadick MD, Holaday BJ et al. Reciprocal expression of IFN-g or IL-4 during resolution or progression of murine leishmaniasis: evidence for expansion of distinct helper T cell subsets. J Exp Med 1989; 169: 59–72.

    Article  PubMed  CAS  Google Scholar 

  26. Holaday BJ, Sadick MD, Wang Z et al. Reconstitution of leishmania immunity in severe combined immunodeficient mice using Thl and Th2 like lines. J Immunol 1991; 147: 1653–58.

    PubMed  CAS  Google Scholar 

  27. Liew FY, Millott S, Schimitt JA. A repetitive peptide of leishmania can activate T helper type 2 cells and enhance disease progression. J Exp Med 1989; 172: 1359–65.

    Article  Google Scholar 

  28. Barrai A, Barrai-Netto M, Yong EL et al. Transforming growth factor b as a virulence mechanism for Leishmania braziliensis. Proc Natl Acad Science 1993; 90: 3442–44.

    Article  Google Scholar 

  29. Carvalho EM, Bacellar O, Brownell C et al. Restoration of lymphocyte proliferation and g-IFN production in visceral leishmaniasis. J Immunol 1994; 152: 5949–56.

    PubMed  CAS  Google Scholar 

  30. Barral-Netto M, Barrai A, Brownell CE et al. Transforming growth factor-b in leishmanial infection: a parasite scape mechanism. Science 257: 545–48.

    Google Scholar 

  31. Sher A, Coffman RL. Regulation of immunity to parasites by T cells and T cells derived cytokines. Ann Rev Immunol 1992; 10: 385–91.

    Article  CAS  Google Scholar 

  32. Silva JS, Morrissey PD, Grabstein KH et al. Interleukin-10 and IFN-g regulation of experimental Trypanosoma cruzi infection. J Exp Med 1992; 175: 169–76.

    Article  PubMed  CAS  Google Scholar 

  33. Sieling PA, Abrams JS, Yamamura M et al. Immunosuppressive roles for IL-10 & IL-4 in human infection. In vitro modulation of T cell responses in leprosy. J Immunol 1993; 150: 5501–10.

    PubMed  CAS  Google Scholar 

  34. Clerici M, Wynn TA, Berzofsky JA, Blatt SP et al. Role of Interleukin-10 (IL-10) in T helper cell dysfunction in asymptomatic individuals infected with the human immunodeficiency virus (HIV-1). J Clin Inv 1994; 93: 768–75.

    Article  CAS  Google Scholar 

  35. Yssel H, de Waal Malefyt R, Roncarolo MG et al. IL-10 is produced by subsets of human CD4+ T cell clones and peripheral blood T cellsl. J Immunol 1992; 149: 2378–84.

    PubMed  CAS  Google Scholar 

  36. Moore KW, O’Garra A, de Waal Malefyt R et al. Interleukin-10. Ann Rev Immunol 1993; 11: 165–90.

    Article  CAS  Google Scholar 

  37. de Waal Malefyt R, Haanen J, Spits H et al. IL-10 and viral IL-10 strongly reduce antigen specific human T cell proliferation by diminishing the antigen presenting capacity of monocytes via down-regulation of class II MHC expression. J Exp Med 1991; 174: 915–21.

    Article  PubMed  CAS  Google Scholar 

  38. Macatonia SE, Doherty TM, Knight SC et al. Differential effect of IL-10 on dendritic cell-induced T cell proliferation and IFN-g productionl. J Immunol 1993; 150: 3755–65.

    PubMed  CAS  Google Scholar 

  39. Bogdan C, Vodovotz Y, Nathan C. Macrophage deactivation by Interleukin-10. J Exp Med 1991; 174: 1549–60.

    Article  PubMed  CAS  Google Scholar 

  40. Gazzinelli RT, Oswald IP, James SL et al. IL-10 inhibits parasite killing and nitrogen oxide production by IFN-g activated macrophages. J Immunol 1992; 148: 1792–96.

    PubMed  CAS  Google Scholar 

  41. Taga K, Tosato G. IL-10 inhibit T cell proliferation and IL-2 production. J Immunol 1992; 148: 1143–49.

    PubMed  CAS  Google Scholar 

  42. Carvalho EM, Teixeira RS, Johnson Jr WD. Cell mediated immunity in American visceral leishmaniasis: reversible immunosuppression during acute infection. Infect Immun 1981; 33: 498–02.

    PubMed  CAS  Google Scholar 

  43. Carvalho EM, Bacellar O, Barrai A et al. Antigen specific immunosuppression in visceral leishmaniasis is cell mediated. J Clin Invest 1989; 83: 860–64.

    Article  PubMed  CAS  Google Scholar 

  44. Haldar JP, Ghose S, Saha KC et al. Cell mediated immune response in Indian kaleazar and post-kala-agar dermal leishmaniasis. Infect Immun 1983; 42: 702–07.

    Google Scholar 

  45. Sacks DL, Lal SL, Shrivastava SN et al. An analysis of T cell responsiveness in Indian kala-azar. J Immunol 1987; 138: 908–13.

    PubMed  CAS  Google Scholar 

  46. Carvalho EM, Andrews BS, Martinelli R et al. Circulating immune complexes and rheumatoid factor in schistosomiasis and visceral leishmaniasis. Am J Trop Med Hyg 1983; 32: 61–9.

    PubMed  CAS  Google Scholar 

  47. Galvâo-Castro B, Si Ferreira GA, Marzochi KF et al. Polyclonal B cell activation circulating immune complexes and auto immunity in human American visceral leishmaniasis. Clin Exp Immunol 1984; 56: 58–66.

    PubMed  Google Scholar 

  48. Badar6 R, Jones TC, Carvalho EM et al. New perspectives on a subclinical form of visceral leishmaniasis. J Infect Dis 1986; 154: 1003–11.

    Article  Google Scholar 

  49. Ho JL, Badar6 R, Schwartz A et al. Diminished in vitro production of IL-1 and tumor necrosis factor-a during acute visceral leishmaniasis and recovery after therapy. J Infect Dis 1992; 165: 1094–99.

    Article  PubMed  CAS  Google Scholar 

  50. Carvalho EM, Badar6 R, Reed SG et al. Absence of g-IFN and Interleukin-2 production during active visceral leishmaniasis. J Clin Invest 1985; 76: 2066–69.

    Article  PubMed  CAS  Google Scholar 

  51. Manson-Bahr PEC. Immunity in kala-azar. Trans Roy Soc Trop Med Hyg 1961; 55: 550–55.

    Article  PubMed  CAS  Google Scholar 

  52. Andrade TM, Teixeira R, Andrade JAF et al. Estudo da hipersensibilidade do tipo retardado na leishmaniose visceral. Rev Inst Med Trop S Paulo 1982; 24: 298–302.

    PubMed  Google Scholar 

  53. Carvalho EM, Bacellar O, Reed SG et al. Visceral leishmaniasis: A disease associated with inability of lymphocytes to activate macrophages to kill leishmania. Braz J Med Res 1988; 21: 85–92.

    CAS  Google Scholar 

  54. Zwingenberger K, Harms G, Pedrosa C et al. Determinants of the immune response in visceral leishmaniasis: Evidence for predominance of endogenous IL-4 over IFN-y production. Clin Immunol Immunopathol 1990; 57: 242–49.

    Article  PubMed  CAS  Google Scholar 

  55. Kemp M, Kurtzhals JAL, Bendtzen K et al. Leishmania donovani reactive Thl and Th2 like T cells clones from individuals who have recovered from visceral leishmaniasis. Infect Immun 1993; 61: 1069–75.

    PubMed  CAS  Google Scholar 

  56. Ghalib HW, Piuvezam MR, Skeiky YAW et al. Interleukin 10 production correlates with pathology in human leishmania donovani infections. J Clin Invest 1993; 92: 324–29.

    Article  PubMed  CAS  Google Scholar 

  57. Karp CL, El-Safi SH, Wynn TA et al. In vivo cytokine profiles in patients with kala-azar marked elevation of both IL-10 and gIFN. J Clin Invest 1993; 91: 1644–48.

    Article  PubMed  CAS  Google Scholar 

  58. Fiorentino D, Zlotnik F, Mosmann TR et al. IL-10 inhibits cytokine production by activated macrophages. J Immunol 1991; 147: 3815–21.

    PubMed  CAS  Google Scholar 

  59. de Waal Malefyt R, Abrams J, Bennett B et al. Interleukin-10 (IL-10) inhibit cytokine synthesis by human monocytes: An auto-regulatory role of IL-10 produced by monocytes. J Exp Med 1991; 174: 1209–20.

    Article  PubMed  CAS  Google Scholar 

  60. Reiner NE, Ng W, Ma T, McMaster WR. Kinetics of g-interferon binding and induction of major histocompability complex class II mRNA levels in Leishmania-infected macrophages. Proc Natl Acad Sci USA 1988; 85: 4330–34.

    Article  PubMed  CAS  Google Scholar 

  61. de Waal Malefyt R, Yssel H, de Vries JE. Direct effects of IL-10 on subsets of human CD4+ T cell clones and resting T cells. Specific inhibition of IL-2 production and proliferationl. J Immunol 1993; 150: 4754–65.

    PubMed  CAS  Google Scholar 

  62. Fiorentino DF, Bond MW, Mosmann TR. Two types of mouse helper T cells. IV. TH2 clones secrete a factor that inhibits cytokine production by TH1 clones. J Exp Med 1989; 170: 2081–98.

    Article  PubMed  CAS  Google Scholar 

  63. Powrie F, Menon S, Coffman RL. Interleukin-4 and Interleukin-10 synergize to inhibit cell-mediated immunity in vivo. Eur J Immunol 1993; 23: 2223–29.

    Article  PubMed  CAS  Google Scholar 

  64. Afonso LCC, Scharton TM, Vieira LQ et al. The adjuvant effect of interleukin-12 in a vaccine against Leishmania major. Science 1994; 263: 235–37.

    Article  PubMed  CAS  Google Scholar 

  65. Gazinelli RT, Hieny S, Wynn TA et al. Interleukin-12 is required for the T lymphocyte-independent induction of interferon-y by an intracellular parasite and induces resistance in T cell-deficient hosts. Proc Natl Acad Sci USA 1993; 90: 6115–19.

    Article  Google Scholar 

  66. Locksley, RM. Interleukin-12 in host defense against microbial pathogens. Proc Natl Acad Sci USA 1993; 90: 5879–80.

    Article  PubMed  CAS  Google Scholar 

  67. Bittencourt AL, Guimarães NA. Imunopatologia da leishmaniose tegumentar diffusa. Med Cut ILA 1968; 2: 395–402.

    Google Scholar 

  68. Bryceson ADM. Diffuse cutaneous leishmaniasis in Ethiopia I. The clinical and histopathological features of the disease. Trans Roy Soc Trop Med Hyg 1970; 63: 708–37.

    Article  Google Scholar 

  69. Convit J, Pinardi ME, Randon AJ. Diffuse cutaneous leishmaniasis: a disease due to an immunological defect of the host. Trans Roy Soc Med Hyg 1972; 66: 603–10.

    Article  CAS  Google Scholar 

  70. Petersen EA, Neva FA, Oster CN et al. Specific inhibition of lymphocyte-proliferation response by adherent suppression cells in diffuse cutaneous leishmaniasis. New Eng J Med 1982; 306: 387–91.

    Article  PubMed  CAS  Google Scholar 

  71. Petersen EA, Neva FA, Barrai A et al. Monocyte suppression of antigen-specific lymphocyte responses in diffuse cutaneous leishmaniasis patients from the Dominican Republic. J Immunol 1984; 132: 2603–06.

    PubMed  CAS  Google Scholar 

  72. Dittmar G, Tapia FG, Sanchez MA et al. Determination of cytokine profile in American cutaneous leishmaniasis using Prolimerase Chain Reaction. Clin Exp Immunol 1993; 91: 500–05.

    Article  Google Scholar 

  73. Jones TC, Johnson WD, Barreto A et al. Epidemiology and clinical manifestation of American leishmaniasis due to L.braziliensis. J Infect Dis 1986; 156: 73–83.

    Article  Google Scholar 

  74. Carvalho EM, Johnson Jr WD, Barreto A et al. Cell mediated immunity in American cutaneous and mucosal leishmaniasis. J. Immunol. 135: 4144–48.

    Google Scholar 

  75. Castes M, Agnelli A, Verde O et al. Characterization of the cellular immune response in American cutaneous leishmaniasis. Clin Exp Immunol 1983; 79: 221–26.

    Google Scholar 

  76. Barral-Netto M, Barrai A, Brodskyn C et al. Cytotoxicity in human mucosal and cutaneous leishmaniasis. Parasite Immunology 1994; in press.

    Google Scholar 

  77. Bittencourt AL, Andrade ZA. Aspectos imunolôgicos da leishamiose cutâneo-mucosa. Hospital (Rio) 1967; 71: 975–84.

    CAS  Google Scholar 

  78. Skeiky YAW, Benson DR, Guderian JA et al. Recombinant leishmania braziliensis Hsp83: A pentavalent stimulators of leishmaniasis patient PBMC responses. Maunscript in preparation.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carvalho, E.M. (1995). IL-10 In Human Leishmaniasis. In: Interleukin-10. Molecular Biology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22038-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22038-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22040-5

  • Online ISBN: 978-3-662-22038-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics