Endogenising Input—Output Coefficients by Means of Industrial Submodels

  • Swami Amrit Terry
  • T. S. Barker
Conference paper
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 251)

Abstract

Large scale multisectoral dynamic models of national economies, such as the Cambridge Multisectoral Dynamic Model (MDM) for the UK (Barker et al., 1980), the INSEE DMS for France (Fouquet et al., 1976) or the GALILEO model for Mexico (Brailovsky, 1984) usually adopt an aggregation much less detailed than that of the input-output tables available. This is done mainly so that the model can include the stochastic determination of real flows and can be extended to cover institutional and financial aspects of economic behaviour and still remain feasible in terms of data and resources required for estimation and solution.

Keywords

Income Gasoline Alan Amrit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almon, C. (1983). 1983 INFORUM modeling experience: division of labor among models, long-run stability and the analysis of protectionism, pp. 9–16 in A. Smyshlyaev (ed.) Proceedings of the Fourth IIASA Task Force Meeting on Input-Output Modeling, IIASA, Laxenburg, Austria.Google Scholar
  2. Barker, T. (1978). Industrial submodels in MDM. Cambridge Growth Project Paper 455, Department of Applied Economics, University of Cambridge, UK.Google Scholar
  3. Barker, Terry, Vani Borooah, Rick van der Ploeg and Alan Winters (1980). The Cambridge Multisectoral Dynamic Model: an instrument for national economic policy analysis. Journal of Policy Modeling, Vol. 2, No. 3, pp. 319–344.CrossRefGoogle Scholar
  4. Barker, T., van der Ploeg, F. and Weale, M. ( forthcoming) . A balanced system of national accounts for the United Kingdom. Review of Income and Wealth, forthcoming.Google Scholar
  5. Brailovsky, V. (1984). Analytical bases for the construction of GALILEO, a multisectoral dynamic model of the Mexican economy. Economia Applicada S.C., Mexico City.Google Scholar
  6. Brown, A. (1963). Decentralised simulation models. Cambridge Growth Project Paper 157, Department of Applied Economics, University of Cambridge, UK.Google Scholar
  7. Forssell, O. (1969). Statistical Units, Classification and Aggregation in a Finnish Input-Output Study, Industrial Planning and Programming Series No. 2, Interindustrial Comparisons of Interindustry Data, United Nations, New York.Google Scholar
  8. Forssell, O. (1972). Explaining changes in input-output coefficients for Finland. In A. Brody and A.P. Carter (eds) Input-Output Techniques, North Holland.Google Scholar
  9. Forssell, O. (1983). Experiences of studying changes in input-output coefficients in Finland. pp. 219–226 in A. Smyshlyaev (ed.) Proceedings of the Fourth IIASA Task Force Meeting on Input-Output Modeling, IIASA, Laxenburg, Austria.Google Scholar
  10. Fouquet, D., Charpin, J.-M., Guillaume, H., Muet, P.-A. and Vallet, D. (1976). DMS, modele de prevision à moyen terme. d’Economie et Statistique No. 79, revue mensuelle de l’INSEE, Paris.Google Scholar
  11. Hooker, O. (1965). A submodel of the iron castings industry. Cambridge Growth Project Paper 202, Department of Applied Economics, University of Cambridge, UK.Google Scholar
  12. Robison, H.D. (1983). The long-run profitability of ethanol in high-octane gasoline: an application of input-output analysis. pp. 297–306 in A. Smyshlyaev (ed.) Proceedings of the Fourth IIASA Task Force Meeting on Input-Output Modeling, IIASA, Laxenburg, Austria.Google Scholar
  13. Skolka, J. (1982). Important input coefficients in Austrian input-output tables for 1964 and 1976. pp. 409–436 in M. Grassini and A. Smyshlyaev (eds) Input-Output Modeling, IIASA, Laxenburg, Austria.Google Scholar
  14. Smyshlyaev, A. (editor) (1983). Proceedings of the Fourth IIASA Task Force Meeting on Input-Output Modeling. IIASA, Laxenburg, Austria.Google Scholar
  15. Tomaszewicz, L. (1983). Variations in input-output coefficients: the application of estimation and forecasting techniques for the case of Poland. pp. 207–218 in A. Smyshlyaev (ed.) Proceedings of the Fourth IIASA Task Force Meeting on Input-Output Modeling, IIASA, Laxenburg, Austria.Google Scholar
  16. UK CSO (1980). Input-Output Tables for the United Kingdom, 1974. Central Statistical Office, HMSO, London.Google Scholar
  17. UN (1968). System of National Accounts. United Nations, New York.Google Scholar
  18. Wigley, K.J. (1964). Some problems arising in submodel construction. Cambridge Growth Project Paper 179, Department of Applied Economics, University of Cambridge, UK.Google Scholar
  19. Wigley, K.J. (1968). The Demand for Fuel 1948–1975. A Submodel for the British Fuel Economy. Vol. 8 in Richard Stone (ed.) A Programme for Growth, Chapman and Hall, London.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Swami Amrit Terry
    • 1
  • T. S. Barker
    • 1
  1. 1.University of CambridgeCambridgeUK

Personalised recommendations