The Structural Basis of the Interaction of IgE and FcεRI

  • Lin Rigby
  • Mark D. Hulett
  • Ross I. Brinkworth
  • P. Mark Hogarth
Part of the Molecular Biology Intelligence Unit book series (MBIU)

Abstract

FcεRI is capable of inducing one of the most powerful and violent pharmacological responses known. Indeed the association of IgE with FcεRI, and subsequent aggregation is a most important interaction in the induction of human disease, and causes more chronic misery (in the West at least) than the engagement of any other immunological receptor. As approximately one in five people are afflicted with IgE dependent allergies—most notably allergic rhinitis or ‘hay fever’ and asthma—there has been a large effort made by many groups in studying this receptor, its ligand and the consequences of its activation. The impetus to study this receptor probably stems from its pathological role rather than its physiological one, which is still somewhat undefined, but with evidence pointing to an anti-parasite role.1

Keywords

Mast Disulphide Papain Disul Gly2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gounni AS, Lamkhioued B, Ochiai K et al. High-affinity IgE receptor on eosinophils is involved in defence against parasites. Nature 1994; 367: 183–86.PubMedCrossRefGoogle Scholar
  2. 2.
    Conrad D, Cooper M, Fridman WH et al. IUIS/WHO Subcommittee on nomenclature of Fc receptors. Nomenclature of Fc receptors. Bulletin of the World Health Organization 1994; 72 (5): 809.Google Scholar
  3. 3.
    Kulczycki Jr A, Metzger H. The interaction of IgE with rat basophilic leukemia cells. II. Quantitative aspects of the binding reaction. J Exp Med 1974; 140: 1676–95.PubMedCrossRefGoogle Scholar
  4. 4.
    Conrad DH, Froese A. Characterization of the target cell receptor for IgE. II. Polyacrylamide gel analysis of the surface IgE receptor from normal rat mast cells and from rat basophilic leukemia cells. J Immunol 1976; 116: 319–26.PubMedGoogle Scholar
  5. 5.
    Kulczycki A, McNearney TA, Parker CW. The rat basophilic leukemia cell for IgE. I. Characterization as a glycoprotein. J Immunol 1976; 117: 661–65.PubMedGoogle Scholar
  6. 6.
    Kanellopolous J, Rossi G, Metzger H. Preparative isolation of the cell receptor for immunoglobulin E. J Biol Chem 1979; 254 (16): 7691–97.Google Scholar
  7. 7.
    Holowka D, Hartmann H, Kanellopolous J et al. Association of the receptor for immunoglobulin E with an endogenous polypeptide on rat basophilic leukemia cells. J Recept Res 1980; 1: 41–68.Google Scholar
  8. 8.
    Holowka D, Metzger H. Further characterization of the 13-component of the receptor for immunoglobulin E. Mol Immunol 1982; 19 (2): 219–27.CrossRefGoogle Scholar
  9. 9.
    Perez-Montfort, R Kinet J-P, Metzger H. A previously unrecognised subunit of the receptor for immunoglobulin E. Biochemistry 1983; 22: 5722–28.CrossRefGoogle Scholar
  10. 10.
    Alcaraz G, Kinet J-P, Kumar N et al. Phase separation of the receptor for immunoglobulin E and its subunits in Triton X-114 J Biol Chem 1984; 259 (23): 14922–27.Google Scholar
  11. 11.
    Rivnay B, Wank SA, Poy G et al. Phospholipids stabilize the interaction between the a and ß subunits of the solubilized receptor for immunoglobulin E. Biochemistry 1982; 21: 6922–27.CrossRefGoogle Scholar
  12. 12.
    Kinet J-P, Alcaraz G, Leonard A et al. Dissociation of the receptor for immunoglobulin E in mild detergents Biochemistry 1985; 24: 4117–24.Google Scholar
  13. 13.
    Metzger H, Kinet J-P, Perez-Montfort R et al. A tetrameric model for the structure of the mast cell receptor for immunoglobulin E. Prog Immunol 1983; 5: 493–501.Google Scholar
  14. 14.
    Metzger H, Alcaraz G, Hohman R et al. The receptor with high affinity for immunoglobulin E. Ann Rev Immunol 1986; 4: 419–70.CrossRefGoogle Scholar
  15. 15.
    Blank U, Ra C, Miller L et al. Complete structure and expression in transfected cells of high affinity IgE receptor. Nature 1989; 337: 187–89.PubMedCrossRefGoogle Scholar
  16. 16.
    Kinet J-P, Metzger H, Hakimi J et al. A cDNA presumptively coding for the a subunit of the receptor with high affinity for immunoglobulin E. Biochemistry 1987; 26: 4605–10.CrossRefGoogle Scholar
  17. 17.
    Kochan J, Pettine LF, Hakimi J et al. Isolation of the gene coding for the a subunit of the human high affinity IgE receptor. Nuc Acid Research 1988; 16: 3584.CrossRefGoogle Scholar
  18. 18.
    Shimizu A, Tepler I, Benfey PN et al. Human and rat mast cell high-affinity immunoglobulin E receptor: characterization of putative a chain gene products. Proc Natl Acad Sci USA 1988; 85: 1907–11.CrossRefGoogle Scholar
  19. 19.
    Liu F-T, Albrandt K, Robertson MW. cDNA heterogeneity suggests structural variants related to the high-affinity IgE receptor. Proc Natl Acad Sci USA 1988; 85: 5639–43.PubMedCrossRefGoogle Scholar
  20. 20.
    Ra C, Jouvin M-HE, Kinet J-P. Complete structure of the mouse mast cell receptor for IgE (FceRI) and surface expression of chimeric receptors (rat-mouse-human) on transfected cells. J Biol Chem 1989b; 264 (26): 15323–27.PubMedGoogle Scholar
  21. 21.
    Tepler I, Shimizu A, Leder P. The gene for the rat mast cell high affinity IgE receptor a chain. Structure and alternative mRNA splicing patterns. J Biol Chem 1989; 264 (10): 5912–15.PubMedGoogle Scholar
  22. 22.
    Varin-Blank N, Metzger H. Surface expression of mutated subunits of the high affinity mast cell receptor for IgE. J Biol Chem 1990; 265 (26): 15685–94.PubMedGoogle Scholar
  23. 23.
    Farber DL, Sears DW. Rat CD16 is defined by a family of class III Fry receptors requiring coexpression of heteroprotein subunits. J Immunol 1991; 146 (12): 4352–61.PubMedGoogle Scholar
  24. 24.
    Ravetch JV, Kinet J-P. FcReceptors. Annu Rev Immunol 1991; 9: 457–92.PubMedCrossRefGoogle Scholar
  25. 25.
    Ye Z-S, Kinet J-P, Paul WE. Structure of the gene for the a chain of the mouse high affinity receptor for IgE FceRI. J Immunol 1992; 149 (3): 897–900.PubMedGoogle Scholar
  26. 26.
    Pang J, Taylor GR, Munroe DG et al. Characterization of the gene for the human high affinity IgE receptor (FceRI) a-chain. J Immunol 1993; 151: 6166–74.PubMedGoogle Scholar
  27. 27.
    Ravetch JV, Perussia B. Alternative membrane forms of FcyRIII (CD16) on human NK cells and neutrophils. Cell-type specific expression of two genes which differ in single nucleotide substitutions. J Exp Med 1989; 170: 481–91.PubMedCrossRefGoogle Scholar
  28. 28.
    Qui WQ, De Bruin D, Brownstein BH et al. Organization of the human and mouse low-affinity FcyR genes: duplication and recombination. Science 1990; 248: 732–35.CrossRefGoogle Scholar
  29. 29.
    Le Conait M, Kinet J-P, Berger R. The human genes for the a and y subunits of the mast cell receptor for immunoglobulin E are located on human chromosome band 1q23. Immunogenetics 1990; 32: 183–86.Google Scholar
  30. 30.
    Kinet J-P, Blank U, Ra C et al. Isolation and characterization of cDNAs coding for the ß subunit of the high-affinity receptor for immunoglobulin E. Proc Natl Acad Sci USA 1988; 85: 6483–87.CrossRefGoogle Scholar
  31. 31.
    Küster H, Zhang L, Brini AT et al. The gene and cDNA for the human high affinity immunoglobulin E receptor ß chain and expression of the complete human receptor. J Biol Chem 1992; 267 (18): 12782–87.Google Scholar
  32. 32.
    Zloh M, Anderson G, Clark-Lewis I et al. N.m.r. studies of the cytoplasmic C-terminal (3-subunit domain of the high-affinity IgE receptor. Biochem Soc Trans 1994a; 22: 1027–29.PubMedGoogle Scholar
  33. 33.
    Zloh M, Anderson G, Clark-Lewis I et al. Spectroscopic and conformational studies of the C-terminal cytoplasmic 13 subunit 46-peptide of the high affinity IgE receptor. Biochem Soc Trans 1994b; 22: 450S.Google Scholar
  34. 34.
    Sandford AJ, Shirakawa T, Moffat MF et al. Localisation of atopy and ß subunit of high-affinity IgE receptor (FceRI) on chromosome 11q. Lancet 1993; 341: 332–34.PubMedCrossRefGoogle Scholar
  35. 35.
    Hogarth PM, Houlden BA, Latham SE et al. Ly-12.1, a lymphocyte specific alloantigen encoded by a gene linked to Ly-1. Immunogenetics 1988; 27: 383–87.PubMedCrossRefGoogle Scholar
  36. 36.
    Huppi K, Siwarski D, Mock BA et al. Gene mapping of the three subunits of the high affinity FcR for IgE to mouse chromosomes 1 and 19. J Immunol 1989; 143: 3787–91.Google Scholar
  37. 37.
    Küster H, Thompson H, Kinet J-P. Characterization and expression of the gene for the human Fc receptor y subunit: Definition of a new gene family. J Biol Chem 1990; 265 (11): 6448–52.PubMedGoogle Scholar
  38. 38.
    Orloff DG, Ra C, Frank SJ et al. Family of disulphide-linked dimers containing the Ç and rl chains of the T cell receptor and the y chain of Fc receptors. 1990 Nature 347: 189–91.Google Scholar
  39. 39.
    Anderson GJ, Haris PI, Chapman D et al. Synthesis and spectroscopy of membrane receptor proteins. The y subunit of the IgE receptor. Eur J Biochem 1992; 207: 51–54.PubMedCrossRefGoogle Scholar
  40. 40.
    Masuda M, Roos D. Association of all three types of FcyR (CD64, CD32, CD16) with a y chain homodimer in cultured human monocytes. J Immunol 1993; 151: 7188–95.PubMedGoogle Scholar
  41. 41.
    Ra C, Jouvin M-H, Blank U et al. A macrophage Fcy receptor and the mast cell receptor for immunglobulin E share an identical subunit. Nature 1989a; 341: 752–54.Google Scholar
  42. 42.
    Ernst LK, Duchemin AM, Anderson CL. Association of the high affinity receptor for IgG (FcyRI) with the y subunit of the IgE receptor. Proc Natl Acad Sci USA 1993; 90: 6023–27.PubMedCrossRefGoogle Scholar
  43. 43.
    Geha RS, Helm BA, Gould H. Inhibition of the Prausnitz-Küstner reaction by an immunoglobulin e-chain fragment synthesised in E. coli. Nature 1985; 315: 577–78.CrossRefGoogle Scholar
  44. 44.
    Scholl PR, Geha RS. Physical association between the high-affinity IgG receptor (FcyRI) and the y subunit of the high-affinity IgE receptor. Proc Natl Acad Sci USA 1993; 90: 8847–50.PubMedCrossRefGoogle Scholar
  45. 45.
    Morton HC, Van den Herikoudijk IE, Vossebeld P et al. Functional association between the human myeloid immunoglobulin A Fc receptor (CD89) and FcR y chain-molecular basis for CD89/FcR y chain association. J Biol Chem 1995; 270 (50): 29781–87.PubMedCrossRefGoogle Scholar
  46. 46.
    Viver E, Rochet N, Kochan J et al. Structural similarity between Fc receptors and T cell receptors. Expression of the y-subunit of FceRI in human T cells, natural killer cells and thymocytes. J Immunol 1991; 147 (12): 4263–70.Google Scholar
  47. 47.
    Qian D, Sperling AI, Lancki DW et al. The y chain of the high-affinity receptor for IgE is a major functional subunit of the T cell antigen receptor complex in yS T lymphocytes. Proc Natl Acad Sci USA 1993; 90: 11875–79.PubMedCrossRefGoogle Scholar
  48. 48.
    Miller L, Blank U, Metzger H et al. Expression of high-affinity binding of human immunoglobulin E by transfected cells. Science 1989; 244: 334–37.Google Scholar
  49. 49.
    Jürgens M, Wollenberg A, Hanau D et al. Activation of human epidermal Langerhans cells by engagement of the high affinity receptor for IgE, FceRI. J Immunol 1995; 155: 5184–89.PubMedGoogle Scholar
  50. 50.
    Mao S-Y, Varin-Blank N, Edidin M et al. Immobilization and internalization of mutated IgE receptors in transfected cells. J Immunol 1991; 146 (3): 958–66.PubMedGoogle Scholar
  51. 51.
    Anderson P, Caligiuri M, O’Brien C et al. Fry receptor type III (CD16) is included in the NK receptor complex expressed by human natural killer cells. Proc Natl Acad Sci USA 1990; 87: 2274–78.PubMedCrossRefGoogle Scholar
  52. 52.
    Howard FD, Rodewald H-R, Kinet J-P et al. CD31 subunit can substitute for the y subunit of FceRI receptor type I in assembly and functional expression of the high-affinity IgE receptor: evidence for inter-receptor complementation. Proc Natl Acad Sci USA 1990; 87: 7015–19.PubMedCrossRefGoogle Scholar
  53. 53.
    Hakimi JC, Seals C, Kondas JA et al. The a subunit of the human IgE receptor (FceRI) is sufficient for high affinity IgE binding. J Biol Chem 1990; 265 (36): 22079–81.PubMedGoogle Scholar
  54. 54.
    Hulett MD, McKenzie IFC, Hogarth PM. Chimeric Fc receptors identify immunoglobulin-binding regions in human FcyRII and FceRI. Eur J Immunol 1993; 23: 640–45.PubMedCrossRefGoogle Scholar
  55. 55.
    Letourneur O, Sechi S, Willette-Brown J et al. Glycosylation of human truncated FceRI a chain is necessary for efficient folding in the endoplasmic recticulum. J Biol Chem 1995; 270 (14): 8249–56.PubMedCrossRefGoogle Scholar
  56. 56.
    Helm BA, Ling Y, Teale C et al. The nature and importance of the inter-e chain disulphide bonds in human IgE. Eur J Immunol 1991; 21: 1543–48.PubMedCrossRefGoogle Scholar
  57. 57.
    Dorrington KJ, Bennich HH. Structure-function relationship in human immunoglobulin E. Imunol Rev 1978; 41: 3–25.CrossRefGoogle Scholar
  58. 58.
    Padlan EA, Davies DR. A model of the Fc of immunoglobulin E. Mol Immunol 1986; 23 (10): 1063–75.CrossRefGoogle Scholar
  59. 59.
    Takatsu K, Ishizaka T, Ishizaka K. Biologic significance of disulphide bonds in human IgE molecules. J Immunol 1975; 114: 1838–45.PubMedGoogle Scholar
  60. 60.
    Rousseaux-Prevost R, Rousseaux J, Bazin H et al. Differential reduction of the interchain disulphide bonds of rat immunoglobulin E: relation to biological activity. Mol Immunol 1984; 21: 233–41.PubMedCrossRefGoogle Scholar
  61. 61.
    Helm BA, Marsh P, Vercelli D et al. The mast cell binding site on human immunoglobulin E. Nature 1988; 331: 180–83.CrossRefGoogle Scholar
  62. 62.
    Padlan EA, Helm BA. A modeling study of the a-subunit of human high-affinity receptor for immunoglobulin-E. Receptor 1992; 2: 129–44.PubMedGoogle Scholar
  63. 63.
    Holowka D, Wensel T, Baird B. A nanosecond fluorescence depolarization study on the segmental flexibility of receptor-bound immunoglobulin E. Biochemistry 1990; 29: 4607–12.CrossRefGoogle Scholar
  64. 64.
    Zheng Y, Shopes B, Holowka D et al. Conformations of IgE bound to its receptor FceRI and in solution. Biochemistry 1991; 30 (38): 9125–32.PubMedCrossRefGoogle Scholar
  65. 65.
    Davis KG, Glennie M, Harding SE et al. A model for the solution conformation of rat IgE. Biochem Soc Trans 1990; 18: 935–36.PubMedGoogle Scholar
  66. 66.
    Beavil AJ, Beavil RL, Chan CMW et al. Structural basis of the IgE-FceRI interaction. Biochem Soc Trans 1993; 21 (4): 968–72.PubMedGoogle Scholar
  67. 67.
    Zheng Y, Shopes B, Holowka D et al. Dynamic conformations compared for IgE and IgG1 in solution and bound to receptors. Biochemistry. 1992; 31 (33): 7446–56.PubMedCrossRefGoogle Scholar
  68. 68.
    Beavil AJ, Young RJ, Sutton BJ et al. Bent domain structure of recombinant human IgE-Fc in solution by X-ray and neutron scattering in conjunction with an automated curve fitting procedure. Biochemistry 1995; 34: 14449–61.PubMedCrossRefGoogle Scholar
  69. 69.
    Holowka D, Conrad DH, Baird B. Structural mapping of membrane-bound immunoglobulin E-receptor complexes: Use of monoclonal anti-IgE antibodies to probe the conformation of receptor-bound IgE. Biochemistry 1985; 24: 6260–67.Google Scholar
  70. 70.
    Keown M, Ghirlando R, Young RJ et al. Hydrodynamic studies of a complex between the Fc fragment of human IgE and a soluble fragment of the FceRI a chain. Proc Natl Acad Sci 1995; 92: 1841–54.PubMedCrossRefGoogle Scholar
  71. 71.
    Kanellopolous J, Liu TY, Poy G et al. Composition and subunit structure of the cell receptor for immunoglobulin E. J Biol Chem 1980; 255 (19): 9060–66.Google Scholar
  72. 72.
    Ra C, Kuromitsu S, Hirose T et al. Soluble human high-affinity receptor for IgE abrogates the IgE-mediated allergic reaction. International Immunology 1993; 5 (1): 47–54.PubMedCrossRefGoogle Scholar
  73. 73.
    Robertson MW. Phage and Escherichia coli expression of the human high affinity immunoglobulin E receptor a-subunit ectodomain. J Biol Chem 1993; 268 (17): 12736–43.Google Scholar
  74. 74.
    Kershaw MH, Darcy PK, Hulett MD et al. Redirected cytotoxic effector function: requirements of chimeric single chain high affinity IgE receptors. J Biol Chem 1996 (in press).Google Scholar
  75. 75.
    Baird B, Holowka D. Structural mapping of Fc receptor bound immunoglobulin E: proximity to the membrane surface of the antibody combining site and another site in the Fab segments. Biochemistry 1985; 24: 6252–59.PubMedCrossRefGoogle Scholar
  76. 76.
    Slattery J, Holowka D, Baird B. Segmental flexibility of receptor-bound immunoglobulin E. Biochemistry 1985; 24: 7810–20.CrossRefGoogle Scholar
  77. 77.
    Ortega E, Licht A, Biener Y et al. A glycolipid-specific monoclonal antibody modulates Fce receptor stimulation of mast cells. Molec Immunol 1990; 27 (12): 1269–77.CrossRefGoogle Scholar
  78. 78.
    Metzger H. Molecular aspects of receptors and binding factors for IgE. Adv Immunol 1988; 43: 277–12.PubMedCrossRefGoogle Scholar
  79. 79.
    Burton DR, Woof JM. Human antibody effector function. Adv Immunol 1992; 51: 1–84.PubMedCrossRefGoogle Scholar
  80. 80.
    Sutton BJ, Gould HJ. The human IgE network. Nature 1993; 366: 421–28.PubMedCrossRefGoogle Scholar
  81. 81.
    Kochan JP, Mallamaci M, Gilfillan A et al. Characterization of the human IgE FcFccRla interaction. In: M.Z. Atassi (ed). Immunobiology of Proteins and Peptides VII. NY: Plenum Press 1994; 31–38.CrossRefGoogle Scholar
  82. 82.
    Hulett MD, Hogarth PM. Molecular basis of Fc receptor function. Adv Immunol 1994; 57: 1–27.PubMedCrossRefGoogle Scholar
  83. 83.
    Blank U, Ra C, Kinet J-P. Characterization of truncated a chain products from human, rat and mouse high affinity receptor for immunoglobulin E. J Biol Chem 1991; 266 (4): 2639–46.Google Scholar
  84. 84.
    Riske F, Hakimi J, Mallamaci M et al. High affinity human IgE receptor (FceRI). Analysis of functional domains of the a-subunit with monoclonal antibodies. J Biol Chem 1991; 266 (17): 11245–51.PubMedGoogle Scholar
  85. 85.
    Hogarth PM, Hulett MD, Ierino FL et al. Identification of the immunoglobulin binding regions (IBR) of FcyRII and FceRI. Immunological Reviews 1992; 125: 21–35.PubMedCrossRefGoogle Scholar
  86. 86.
    Mallamaci MA, Chizzonite R, Griffin M et al. Identification of sites on the human FceRIa subunit which are involved in binding human and rat IgE. J Biol Chem 1993; 268 (29): 22076–83.PubMedGoogle Scholar
  87. 87.
    Scarselli E, Esposito G, Traboni C. Receptor Phage. Display of functional domains of the human high affinity IgE receptor on the M13 phage surface. FEBS Let 1993; 329: 223–26.CrossRefGoogle Scholar
  88. 88.
    Padlan EA, Helm BA. Modelling study of IgE/receptor interactions. Biochem Soc Trans 1993; 21 (4): 963–67.PubMedGoogle Scholar
  89. 89.
    McDonnell JM, Beavil AJ, Mackay et al. Structure based design and characterisation of peptides that inhibit IgE binding to its high affinity receptor. Nature Struct Biol 1996; 3 (5): 419–426.PubMedCrossRefGoogle Scholar
  90. 90.
    Hulett MD, Osman N, McKenzie IFC et al. Chimeric Fc receptors identify functional domains of the murine FceRI high affinity receptor for IgG. J Immunol 1991; 147: 1863–68.PubMedGoogle Scholar
  91. 91.
    Hulett MD, Witort E, Brinkworth RI et al. Identification of the IgG binding site of the low affinity receptor for IgG FcyRII: enhancement and ablation of binding site directed mutagenesis. J Biol Chem 1994; 269: 15287: 93.Google Scholar
  92. 92.
    Hulett MD, Witort E, Brinkworth RI et al. Multiple regions of human FcyRII (CD32) contribute to the binding of IgG. J Biol Chem 1995; 270 (36): 21188–94.PubMedCrossRefGoogle Scholar
  93. 93.
    Hibbs ML, Tolvanen M, Carpen O. Membrane-proximal Ig-like domain of FcyRIII (CD16) contains residues critical for ligand binding. J Immunol 1994; 152: 4466–74.PubMedGoogle Scholar
  94. 94.
    Ishizaka T, Ishizaka K. Biology of immunoglobulin E. Prog. Allergy 1975; 19: 60–21.Google Scholar
  95. 95.
    Liu F-T, Albrandt K, Bry CG et al. Expression of a biologically active fragment of human IgE e chain in Escherichia coli. Proc Natl Acad Sci USA 1984; 81: 5369–73.PubMedCrossRefGoogle Scholar
  96. 96.
    Perez-Montfort R, Metzger H. Proteolysis of soluble IgE-receptor complexes: Localization of sites on IgE which interact with the Fc receptor. Mol Immunol 1982; 19: 1113–25.PubMedCrossRefGoogle Scholar
  97. 97.
    Hamburger R. Peptide inhibition of the Prausnitz-Kiistner reaction. Science 1975; 189: 389–90.PubMedCrossRefGoogle Scholar
  98. 98.
    Bennich H, Ragnarsson U, Johansson SGO et al. Failure of the putative IgE pentapeptide to compete with IgE for receptors on basophils and mast cells. Int Archs Allergy appl Immun 1977; 53: 459–68.CrossRefGoogle Scholar
  99. 99.
    Duncan AR, Woof JM, Partridge LJ et al. Localization of the binding site for the human high-affinity Fc receptor on IgG. Nature 1988; 332: 563–64.PubMedCrossRefGoogle Scholar
  100. 100.
    Canfield SM, Morrison SL. The binding affinity of human IgG for its high affinity Fc receptor is determined by multiple amino acids in the CH2 domain and is modulated by the hinge region. J Exp Med 1991; 173: 1483–91.PubMedCrossRefGoogle Scholar
  101. 101.
    Presta L, Shields R, O’Connell L et al. The binding site on human immunoglobulin E for its high affinity receptor. J Biol Chem 1994; 269 (42): 26368–73.Google Scholar
  102. 102.
    Helm BA, Kebo D, Vercelli D et al. Blocking of passive sensitization of human mast cells and basophil granulocytes with IgE antibodies by a recombinant human-c chain fragment of 76 amino acids. Proc Natl Acad Sci USA 1989; 86: 9465–69.PubMedCrossRefGoogle Scholar
  103. 103.
    Basu M, Hakimi J, Dharm E et al. Purification and characterization of human recombinant IgE-Fc fragments that bind to the human high affinity IgE receptor. J Biol Chem 1993; 268 (18): 13118–27.PubMedGoogle Scholar
  104. 104.
    Helm BA, Sayers I, Higginbottom A et al. Identification of the high-affinity receptor binding region in immunoglobulin E. J Biol Chem 1996; 271: 7494–7500.CrossRefGoogle Scholar
  105. 105.
    Stanworth DR, Humphrey JH, Bennich H et al. Inhibition of Prausnitz-Küstner reaction by proteolytic-cleavage fragments of a human myeloma protein of immunoglobulin class E. Lancet 1968; 11: 17–18.CrossRefGoogle Scholar
  106. 106.
    Nissim A, Jouvin M-H, Eshhar Z. Mapping of the high affinity Fce receptor binding site to the third constant region domain of IgE. EMBO J 1991; 10: 101–107.PubMedGoogle Scholar
  107. 107.
    Takemoto H, Nishimura S, Kosada Y et al. Anti-human IgE monoclonal antibodies recognizing epitopes related to the binding sites of high and low affinity IgE receptors. Microbiol Immunol 1994; 38 (1): 63–71.PubMedGoogle Scholar
  108. 108.
    Nissim A, Schwartzbaum S, Siraganian R et al. Fine specificity of the IgE interaction with the low and high affinity Fc receptor. J Immunol 1993; 150 (4): 1365–74.PubMedGoogle Scholar
  109. 109.
    Baniyash M, Eshhar Z, Rivnay B. Relationships between epitopes on IgE recognized by defined monoclonal antibodies and by the Fce receptor on basophils. J Immunol 1986; 136: 588–93.PubMedGoogle Scholar
  110. 110.
    Conrad DH, Wingard JR, Ishizaka T. The interaction of human and rodent IgE with the human basophil IgE receptor. J Immunol 1983; 130 (1): 327–33.PubMedGoogle Scholar
  111. 111.
    Weetall M, Shopes B, Holowka D et al. Mapping the site of interaction between murine IgE and its high affinity receptor with chimeric Ig. J Immunol 1990; 145 (11): 3849–54.PubMedGoogle Scholar
  112. 112.
    Keegan AD, Fratazzi C, Shopes B et al. Characterisation of new tat anti-mouse IgE monoclonals and their use along with chimeric IgE to further define the site that interacts with FceRII and FceRI. Molec Immunol 1991; 28: 1149–54.CrossRefGoogle Scholar
  113. 113.
    Schwarzbaum S, Nissim A, Alkalay I et al. Mapping of murine IgE epitopes involved in IgE-Fce receptor interactions. Eur J Immunol 1989; 19: 1015–23.PubMedCrossRefGoogle Scholar
  114. 114.
    Helm BA. Is there a link between the nature of agents that trigger mast cells and the induction of immunoglobulin (Ig)E synthesis? In: Atassi MZ, ed. Immunobiology of Proteins and Peptides VII. New York: Plenum Press, 1994: 1–10.CrossRefGoogle Scholar
  115. 115.
    Burmeister WP, Huber AH, Bjorkman PJ. Crystal structure of the complex of rat neonatal Fc receptor with Fc. Nature 1994; 372: 379–83.PubMedCrossRefGoogle Scholar
  116. 116.
    Burt DS, Hastings GZ, Healy J et al. Analysis of the interaction between rat immunoglobulin E and rat mast cells using anti-peptide antibodies. Mol Immunol 1987; 24 (4): 379–89.Google Scholar
  117. 117.
    Coleman JW, Helm BA, Stanworth DR et al. Inhibition of mast cell sensitization in vitro by a human immunoglobulin e-chain fragment synthesized in Escherichia coli. Eur J Immunol 1985; 15: 966–69.PubMedCrossRefGoogle Scholar
  118. 118.
    Nio N, Seguro K, Ariyoshi Y et al. Inhibition of histamine release by synthetic human IgE peptide fragments: Structure-activity studies. In: Yanaihara N, ed. Peptide Chemistry 1989. Osaka: Protein Res Found, 1990: 204–208.Google Scholar
  119. 119.
    Nissim A, Eshhar Z. The human mast cell receptor binding site maps to the third constant domain of immunoglobulin E. Molec Immunol 1992; 29 (9): 1065–72.CrossRefGoogle Scholar
  120. 120.
    Takizawa F, Adamczewski M, Kinet J-P. Identification of the low affinity receptor for immunoglobulin E on mouse mast cells and macrphages as FcyRII and Fc7RIII. J Exp Med 1992; 176: 469–75.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Lin Rigby
  • Mark D. Hulett
  • Ross I. Brinkworth
  • P. Mark Hogarth

There are no affiliations available

Personalised recommendations