Admissible Shocks

  • Constantine M. Dafermos
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 325)

Abstract

Shock fronts were introduced in Section 1.6, for general systems of balance laws, and were placed in the context of BV solutions in Section 1.8. They were encountered again, briefly, in Section 3.1, where the governing Rankine-Hugoniot condition was recorded.

Keywords

Entropy Manifold Electrophoresis Librium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. 1.
    Friedrichs, K.O.: Nonlinear hyperbolic differential equations for functions of two independent variables. Am. J. Math. 70 (1948), 555–589.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Lax, P.D.: Hyperbolic systems of conservation laws. Comm. Pure Appl. Math. 10 (1957), 537566.Google Scholar
  3. 1.
    Smoller, J.: Shock Waves and Reaction-Diffusion Equations ( Second Edition ). New York: Springer, 1994.MATHGoogle Scholar
  4. 9.
    Serre, D.: Systèmes de Lois de Conservation, Vols. I-I1. Paris: Diderot, 1996. English translation: Systems of Conservation Laws, Vols. 1–2. Cambridge: Cambridge University Press, 1999.Google Scholar
  5. 1.
    Hugoniot, H.; Sur la propagation du movement dans les corps et spécialement dans les gaz parfaits. J. Ecole Polytechnique 58 (1889), 1–125.Google Scholar
  6. 2.
    Lax, P.D.: Hyperbolic systems of conservation laws. Comm. Pure Appl. Math. 10 (1957), 537566.Google Scholar
  7. 1.
    Temple, B.: Systems of conservation laws with invariant submanifolds. Trans. AMS 280 (1983), 781–795.MathSciNetMATHCrossRefGoogle Scholar
  8. 1.
    Yu, Shih-Hsien: Zero dissipation limit to solutions with shocks for systems of hyperbolic conservation laws. Arch. Rational Mech. Anal. 146 (1999), 275–370.MATHGoogle Scholar
  9. 1.
    Chang, T. and L. Hsiao; Riemann problem and discontinuous initial value problem for typical quasilinear hyperbolic system without convexity. Acta Math. Sinica 20 (1977), 229–231.Google Scholar
  10. 2.
    Majda, A.: The existence of multi-dimensional shock fronts. Memoirs AMS 43 (1983), No. 281.Google Scholar
  11. 1.
    Godin, P.: Global shock waves in some domains for the isentropic irrotational potential flow equations. Comm. PDE 22 (1997), 1929–1997.MathSciNetMATHCrossRefGoogle Scholar
  12. 1.
    Majda, A.: The stability of multi-dimensional shock fronts. Memoirs AMS 41 (1983), No. 275.Google Scholar
  13. 1.
    Schaeffer, D.: Sablé-Tougeron, M.: Méthode de Glimm et problème mixte. Ann. Inst. Henri Poincaré 10 (1993), 423–443.1. A regularity theorem for conservation laws. Adv. in Math. 11 (1973), 368–386.MathSciNetMATHGoogle Scholar
  14. 1.
    Xin, Z.: On the linearized stability of viscous shock profiles for systems of conservation laws. J. Diff. Eqs. 100 (1992), 119–136.MATHCrossRefGoogle Scholar
  15. 1.
    Bethe, H.: Report on the theory of shock waves for an arbitrary equation of state. Report No. PB-32189. Clearinghouse for Federal Scientific and Technical Information, U.S. Dept. of Commerce, Washington DC, 1942.Google Scholar
  16. 1.
    Weyl, H.: Shock waves in arbitrary fluids. Comm. Pure Appl. Math. 2 (1949), 103–122.MathSciNetMATHGoogle Scholar
  17. 2.
    Liu, T.-P.: The entropy condition and the admissibility of shocks. J. Math. Anal. Appl. 53 (1976), 78–88.MathSciNetMATHCrossRefGoogle Scholar
  18. 4.
    Oleinik, O.A.: Uniqueness and stability of the generalized solution of the Cauchy problem for quasi-linear equation. Usp. Mat. Nauk 14 (1959), 165–170. English translation: AMS Translations, Ser. II, 33, 285–290.Google Scholar
  19. 1.
    Wendroff, B.: The Riemann problem for materials with nonconvex equation of state. J. Math. Anal. Appl. 38 (1972), 454–466, 640–658.MathSciNetCrossRefGoogle Scholar
  20. 1.
    Hsiao, L.: The entropy rate admissibility criterion in gas dynamics. J. Diff. Eqs. 38 (1980), 226–238.Google Scholar
  21. 2.
    Hsiao, L.: Quasilinear Hyperbolic Systems and Dissipative Mechanisms. Singapore: World Scientific, 1997.MATHGoogle Scholar
  22. 1.
    Hsiao, L. and Zhang Tung: Riemann problem for 2 x 2 quasilinear hyperbolic system without convexity. Ke Xue Tong Bao 8 (1978), 465–469.Google Scholar
  23. 4.
    Lax, P.D.: Shock waves and entropy. Contributions to Functional Analysis pp. 603–634, ed. E.A. Zarantonello. New York: Academic Press, 1971.Google Scholar
  24. 10.
    Dafermos, C.M.: Hyperbolic systems of conservation laws. Systems of Nonlinear Partial Differential Equations, pp. 25–70, ed. J.M. Ball. Dordrecht: D. Reidel 1983.Google Scholar
  25. 1.
    Rankine, W.J.M.: On the thermodynamic theory of waves of finite longitudinal disturbance. Phil. Trans. Royal Soc. London 160 (1870), 277–288.CrossRefGoogle Scholar
  26. Rayleigh, Lord (J.W. Strutt): Aerial plane waves of finite amplitude. Proc. Royal Soc. London 84A (1910), 247–284.Google Scholar
  27. 1.
    Zeldovich, Ya. and Yu. Raizer: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vols. I—I1. New York: Academic Press, 1966–1967.Google Scholar
  28. 1.
    Gilbarg, D.: The existence and limit behavior of the one-dimensional shock layer. Am. J. Math. 73 (1951), 256–274.MathSciNetMATHCrossRefGoogle Scholar
  29. 1.
    Gelfand, I.: Some problems in the theory of quasilinear equations. Usp. Mat. Nauk 14 (1959), 87–158. English translation: AMS Translations, Ser. II, 29, 295–381.Google Scholar
  30. 1.
    Majda, A. and R. Pego: Stable viscosity matrices for systems of conservation laws. J. Diff. Eqs. 56 (1985), 229–262.MathSciNetMATHCrossRefGoogle Scholar
  31. 1.
    Foy, R.L.: Steady state solutions of hyperbolic systems of conservation laws with viscosity terms. Comm. Pure Appl. Math. 17 (1964), 177–188.MathSciNetMATHGoogle Scholar
  32. 1.
    Mock, M.S.: A topological degree for orbits connecting critical points of autonomous systems. J. Diff. Eqs. 38 (1980), 176–191.MathSciNetMATHCrossRefGoogle Scholar
  33. 1.
    Smoller, J.: Shock Waves and Reaction-Diffusion Equations ( Second Edition ). New York: Springer, 1994.MATHGoogle Scholar
  34. 1.
    Majda, A. and R. Pego: Stable viscosity matrices for systems of conservation laws. J. Diff. Eqs. 56 (1985), 229–262.MathSciNetMATHCrossRefGoogle Scholar
  35. 1.
    Pego, R.L.: Stable viscosities and shock profiles for systems of conservation laws. Trans. AMS 282 (1984), 749–763.MathSciNetMATHCrossRefGoogle Scholar
  36. 1.
    Antman, S.S. and R. Malek-Madani: Traveling waves in nonlinearly viscoelastic media and shock structure in elastic media. Quart. Appl. Math. 46 (1988), 77–93.MathSciNetMATHGoogle Scholar
  37. 2.
    Pego, R.L.: Nonexistence of a shock layer in gas dynamics with a nonconvex equation of state. Arch. Rational Mech. Anal. 94 (1986), 165–178.MathSciNetMATHGoogle Scholar
  38. 1.
    Azevedo, A.V., Marchesin, D., Plohr, B.J. and K. Zumbrun: Well-posedness for a class of 2 x 2 conservation laws with Lx data. J. Diff. Eqs. 140 (1997), 161–185.MATHCrossRefGoogle Scholar
  39. 1.
    Bressan, A. and P. Goatin: Oleinik type estimates and uniqueness for n x n conservation laws. J. Diff. Eqs. 156 (1999), 26–49.MathSciNetMATHCrossRefGoogle Scholar
  40. 1.
    Goodman, J.: Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch. Rational Mech. Anal. 95 (1986), 325–344.MATHGoogle Scholar
  41. 12.
    Liu, T.-P.: Nonlinear stability of shock waves for viscous conservation laws. Memoirs AMS 56 (1985), No. 328.Google Scholar
  42. 1.
    Liu, T.-P. and Z. Xin: Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations. Comm. Math. Phys. 118 (1986), 451–465.MathSciNetCrossRefGoogle Scholar
  43. 1.
    Liu, T.-P. and K. Zumbrun: On nonlinear stability of general undercompressive viscous shock waves. Comm. Math. Phys. 174 (1995), 319–345.MathSciNetMATHCrossRefGoogle Scholar
  44. Szepessy A. and K. Zumbrun: Stability of rarefaction waves in viscous media. Arch. Rational Mech. Anal. 133 (1996), 249–298.Google Scholar
  45. 1.
    Benabdallah, A. and D. Serre: Problèmes aux limites pour des systèmes hyperboliques nonlinéaires de deux equations à une dimension d’espace. C. R. Acad. Sc1. Paris, Série I, 305 (1987), 677–680.MathSciNetMATHGoogle Scholar
  46. 1.
    Kawashima, S. and A. Matsumura: Stability of shock profiles in viscoelasticity with non-convex constitutive relations. Comm. Pure Appl. Math. 47 (1994), 1547–1569.MathSciNetGoogle Scholar
  47. 17.
    Liu, T.-P.: Pointwise convergence to shock waves for viscous conservation laws. Comm. Pure Appl. Math. 50 (1997), 1113–1182.MATHGoogle Scholar
  48. 1.
    Liu, T.-P., Matsumura, A. and K. Nishihara: Behavior of solutions for the Burgers equation with boundary corresponding to rarefaction waves. SIAM J. Math. Anal. 29 (1998), 293–308.MathSciNetMATHGoogle Scholar
  49. 2.
    Liu, T.-P. and Z. Xin: Stability of viscous shock waves associated with a system of nonstrictly hyperbolic conservation laws. Comm. Pure Appl. Math. 45 (1992), 361–388.MathSciNetGoogle Scholar
  50. 3.
    Liu, T.-P. and Z. Xin: Pointwise decay to contact discontinuities for systems of viscous conservation laws. Asian J. Math. 1 (1997), 34–84.MathSciNetMATHGoogle Scholar
  51. 1.
    Liu, T.-P. and S.-H. Yu: Propagation of a stationary shock layer in the presence of a boundary. Arch. Rational Mech. Anal. 139 (1997), 57–82.MATHGoogle Scholar
  52. 1.
    Liu, T.-P. and Y. Zeng: Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservaton laws. Memoirs AMS 125 (1997), No. 549.Google Scholar
  53. 2.
    Liu, T.-P. and Y. Zeng: Compressible Navier-Stokes equations with zero heat conductivity. J. Diff. Eqs. 153 (1999), 225–291.MathSciNetMATHCrossRefGoogle Scholar
  54. 1.
    Liu, T.-P. and K. Zumbrun: On nonlinear stability of general undercompressive viscous shock waves. Comm. Math. Phys. 174 (1995), 319–345.MathSciNetMATHCrossRefGoogle Scholar
  55. 1.
    Xin, Z.: On the linearized stability of viscous shock profiles for systems of conservation laws. J. Diff. Eqs. 100 (1992), 119–136.MATHCrossRefGoogle Scholar
  56. 3.
    Xin, Z.: On nonlinear stability of contact discontinuities. Hyperbolic Problems: Theory, Numerics, Applications, pp. 249–257, eds. J. Glimm, M.J. Graham, J.W. Grove and B.J. Plohr. Singapore: World Scientific, 1996.Google Scholar
  57. 1.
    Zeng, Yanni: Convergence to diffusion waves of solutions to nonlinear viscoelastic model with fading memory. Comm. Math. Phys. 146 (1992), 585–6609.MathSciNetMATHCrossRefGoogle Scholar
  58. 2.
    Zeng, Yanni: L’ asymptotic behavior of compressible isentropic viscous I — D flow. Comm. Pure Appl. Math. 47 (1994), 1053–1082.MATHGoogle Scholar
  59. 3.
    Zeng, Yanni: LP asymptotic behavior of solutions to hyperbolic-parabolic systems of conservation laws. Arch. Math. 66 (1996), 310–319.MATHCrossRefGoogle Scholar
  60. 1.
    Zumbrun K. and P. Howard: Pointwise semigroup methods and stability of viscous shock waves. Indiana U. Math. J. 47 (1998), 63–85.MathSciNetGoogle Scholar
  61. 1.
    Gardner, R.A. and K. Zumbrun: The gap lemma and geometric criteria for instability of viscous shock profiles. Comm. Pure Appl. Math. 51 (1998), 797–855.MathSciNetGoogle Scholar
  62. 1.
    Luo, T. and D. Serre: Linear stability of shock profiles for a rate-type viscoelastic system with relaxation. Quart. Appl. Math. 56 (1998), 569–586.MathSciNetMATHGoogle Scholar
  63. 1.
    Serre, D.: Solutions à variation bornée pour certains systèmes hyperboliques de lois de conservation. J. Diff. Eqs. 67 (1987), 137–168.CrossRefGoogle Scholar
  64. 1.
    Serre, D.: olutions classiques globales des équations d’Euler pour un fluide parfait compressible. Ann. Inst. Fourier, Grenoble 47 (1997), 139–153.Google Scholar
  65. 1.
    Fries, C.: Nonlinear asymptotic stability of general small-amplitude viscous Laxian shock waves. J. Diff. Eqs. 146 (1998), 185–202.MathSciNetMATHCrossRefGoogle Scholar
  66. 2.
    Fries, C.: Stability of viscous shock waves associated with non-convex modes. Arch. Rational Mech. Anal. (To appear).Google Scholar
  67. 16.
    Liu, T.-P.: On the viscosity criterion for hyperbolic conservation laws. Viscous Profiles and Numerical Methods for Shock Waves, pp. 105–114, ed. M. Shearer. Philadelphia: SIAM, 1991.Google Scholar
  68. 1.
    Brio, M. and J.K. Hunter: Rotationally invariant hyperbolic waves. Comm. Pure Appl. Math. Cabannes, H.: (l09), 1037–1053.Google Scholar
  69. 1.
    Freistühler, H.: Instability of vanishing viscosity approximation to hyperbolic systems of conservation laws with rotational invariance. J. Diff. Eqs. 87 (1990), 205–226.MATHCrossRefGoogle Scholar
  70. 3.
    Freistühler, H.: Dynamical stability and vanishing viscosity. A case study of a non-strictly hyperbolic system. Comm. Pure Appl. Math. 45 (1992), 561–582.MATHGoogle Scholar
  71. 1.
    Freistühler, H. and T.-P. Liu: Nonlinear stability of overcompressive shock waves in a rotationally invariant system of viscous conservation laws. Comm. Math. Phys. 153 (1993), 147–158.MathSciNetMATHCrossRefGoogle Scholar
  72. 1.
    Freistühler, H. and P. Szmolyan: Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves. SIAM J. Math. Anal. 26 (1995), 112–128.MATHGoogle Scholar
  73. 1.
    Abeyaratne, R. and J.K. Knowles: Kinetic relations and the propagation of phase boundaries in solids. Arch. Rational Mech. Anal. 114 (1991), 119–154.MathSciNetMATHGoogle Scholar
  74. 2.
    Abeyaratne, R. and J.K. Knowles: On the propagation of maximally dissipative phase boundaries in solids. Quart. Appl. Math. 50 (1992), 149–172.MathSciNetMATHGoogle Scholar
  75. 2.
    Benzoni-Gavage, S.: Stability of subsonic planar phase boundaries in a van der Waals fluid. Arch. Rational Mech. Anal. (To appear).Google Scholar
  76. 1.
    Hagan, R. and M. Slemrod: The viscosity-capillarity criterion for shocks and phase transitions. Arch. Rational Mech. Anal. 83 (1983), 333–361.MathSciNetMATHGoogle Scholar
  77. 1.
    James, F., Peng, Y.J. and B. Perthame: Kinetic formulation for chromatography and some other hyperbolic systems. J. Math. Pures Appl. 74 (1995), 367–385.MathSciNetMATHGoogle Scholar
  78. 2.
    Keyfitz, B.L.: Admissibility conditions for shocks in systems that change type. SIAM J. Math. Anal. 22 (1991), 1284–1292.MathSciNetMATHGoogle Scholar
  79. 3.
    LeFloch, P.G.: Propagating phase boundaries: formulation of the problem and existence via the Glimm scheme. Arch. Rational Mech. Anal. 123 (1993), 153–197.MathSciNetGoogle Scholar
  80. 1.
    Rosakis, P.: An equal area rule for dissipative kinetics of propagating strain discontinuities. SIAM J. Appt Math. 55 (1995), 100–123.MathSciNetMATHGoogle Scholar
  81. 1.
    Slemrod, M.: Admissibility criteria for propagating phase boundaries in a van der Waals fluid. Arch. Rational Mech. Anal. 81 (1983), 301–315.MathSciNetMATHGoogle Scholar
  82. 2.
    Slemrod, M.: Dynamic phase transitions in a van der Waals fluid. J. Diff. Eqs. 52 (1984), 1–23.MathSciNetMATHCrossRefGoogle Scholar
  83. 1.
    Truskinovsky, L.: Structure of an isothermal phase discontinuity. Soviet Physics Doklady 30 (1985), 945–948.Google Scholar
  84. 2.
    Truskinovsky, L.: Transition to detonation in dynamic phase changes. Arch. Rational Mech. Anal. 125 (1994), 375–397.MathSciNetMATHGoogle Scholar
  85. 2.
    LeFloch, P.G.: Entropy weak solutions to nonlinear hyperbolic systems in nonconservative form. Comm. PDE 13 (1988), 669–727.MathSciNetCrossRefGoogle Scholar
  86. Dal Masso, G., LeFloch, P. and F. Murat: Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74 (1995), 483–548.Google Scholar
  87. 1.
    Amadori, D., Baiti, P., LeFloch, P.G. and B. Piccoli: Nonclassical shocks and the Cauchy problem for nonconvex conservation laws. J. Diff. Eqs. 151 (1999), 345–372.MathSciNetMATHCrossRefGoogle Scholar
  88. 1.
    Hayes, B. and P.G. LeFloch: Nonclassical shocks and kinetic relations: Scalar conservaton laws. Arch. Rational Mech. Anal. 139 (1997), 1–56.MathSciNetMATHGoogle Scholar
  89. 2.
    Hayes, B. and P.G. LeFloch: Nonclassical shocks and kinetic relations: Strictly hyperbolic systems. SIAM J. Math. Anal. (To appear).Google Scholar
  90. 1.
    LeFloch, P.G. and A.E. Tzavaras: Representation of weak limits and definition of nonconservative products. SIAM J. Math. Anal. 30 (1999), 1309–1342.MathSciNetMATHGoogle Scholar
  91. 4.
    LeFloch, P.G.: An introduction to nonclassical shocks of systems of conservation laws. An Introduction to Recent Developments in Theory and Numerics, for Conservation Laws, pp. 28–72, eds. D. Kröner, N. Ohlberger and C. Rohde. Berlin: Springer, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Constantine M. Dafermos
    • 1
  1. 1.Division of Applied MathematicsBrown UniversityProvidenceUSA

Personalised recommendations