Skip to main content

Part of the book series: Grundlehren der mathematischen Wissenschaften ((GL,volume 325))

  • 734 Accesses

Abstract

Shock fronts were introduced in Section 1.6, for general systems of balance laws, and were placed in the context of BV solutions in Section 1.8. They were encountered again, briefly, in Section 3.1, where the governing Rankine-Hugoniot condition was recorded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. Friedrichs, K.O.: Nonlinear hyperbolic differential equations for functions of two independent variables. Am. J. Math. 70 (1948), 555–589.

    Article  MathSciNet  MATH  Google Scholar 

  2. Lax, P.D.: Hyperbolic systems of conservation laws. Comm. Pure Appl. Math. 10 (1957), 537566.

    Google Scholar 

  3. Smoller, J.: Shock Waves and Reaction-Diffusion Equations ( Second Edition ). New York: Springer, 1994.

    MATH  Google Scholar 

  4. Serre, D.: Systèmes de Lois de Conservation, Vols. I-I1. Paris: Diderot, 1996. English translation: Systems of Conservation Laws, Vols. 1–2. Cambridge: Cambridge University Press, 1999.

    Google Scholar 

  5. Hugoniot, H.; Sur la propagation du movement dans les corps et spécialement dans les gaz parfaits. J. Ecole Polytechnique 58 (1889), 1–125.

    Google Scholar 

  6. Lax, P.D.: Hyperbolic systems of conservation laws. Comm. Pure Appl. Math. 10 (1957), 537566.

    Google Scholar 

  7. Temple, B.: Systems of conservation laws with invariant submanifolds. Trans. AMS 280 (1983), 781–795.

    Article  MathSciNet  MATH  Google Scholar 

  8. Yu, Shih-Hsien: Zero dissipation limit to solutions with shocks for systems of hyperbolic conservation laws. Arch. Rational Mech. Anal. 146 (1999), 275–370.

    MATH  Google Scholar 

  9. Chang, T. and L. Hsiao; Riemann problem and discontinuous initial value problem for typical quasilinear hyperbolic system without convexity. Acta Math. Sinica 20 (1977), 229–231.

    Google Scholar 

  10. Majda, A.: The existence of multi-dimensional shock fronts. Memoirs AMS 43 (1983), No. 281.

    Google Scholar 

  11. Godin, P.: Global shock waves in some domains for the isentropic irrotational potential flow equations. Comm. PDE 22 (1997), 1929–1997.

    Article  MathSciNet  MATH  Google Scholar 

  12. Majda, A.: The stability of multi-dimensional shock fronts. Memoirs AMS 41 (1983), No. 275.

    Google Scholar 

  13. Schaeffer, D.: Sablé-Tougeron, M.: Méthode de Glimm et problème mixte. Ann. Inst. Henri Poincaré 10 (1993), 423–443.1. A regularity theorem for conservation laws. Adv. in Math. 11 (1973), 368–386.

    MathSciNet  MATH  Google Scholar 

  14. Xin, Z.: On the linearized stability of viscous shock profiles for systems of conservation laws. J. Diff. Eqs. 100 (1992), 119–136.

    Article  MATH  Google Scholar 

  15. Bethe, H.: Report on the theory of shock waves for an arbitrary equation of state. Report No. PB-32189. Clearinghouse for Federal Scientific and Technical Information, U.S. Dept. of Commerce, Washington DC, 1942.

    Google Scholar 

  16. Weyl, H.: Shock waves in arbitrary fluids. Comm. Pure Appl. Math. 2 (1949), 103–122.

    MathSciNet  MATH  Google Scholar 

  17. Liu, T.-P.: The entropy condition and the admissibility of shocks. J. Math. Anal. Appl. 53 (1976), 78–88.

    Article  MathSciNet  MATH  Google Scholar 

  18. Oleinik, O.A.: Uniqueness and stability of the generalized solution of the Cauchy problem for quasi-linear equation. Usp. Mat. Nauk 14 (1959), 165–170. English translation: AMS Translations, Ser. II, 33, 285–290.

    Google Scholar 

  19. Wendroff, B.: The Riemann problem for materials with nonconvex equation of state. J. Math. Anal. Appl. 38 (1972), 454–466, 640–658.

    Article  MathSciNet  Google Scholar 

  20. Hsiao, L.: The entropy rate admissibility criterion in gas dynamics. J. Diff. Eqs. 38 (1980), 226–238.

    Google Scholar 

  21. Hsiao, L.: Quasilinear Hyperbolic Systems and Dissipative Mechanisms. Singapore: World Scientific, 1997.

    MATH  Google Scholar 

  22. Hsiao, L. and Zhang Tung: Riemann problem for 2 x 2 quasilinear hyperbolic system without convexity. Ke Xue Tong Bao 8 (1978), 465–469.

    Google Scholar 

  23. Lax, P.D.: Shock waves and entropy. Contributions to Functional Analysis pp. 603–634, ed. E.A. Zarantonello. New York: Academic Press, 1971.

    Google Scholar 

  24. Dafermos, C.M.: Hyperbolic systems of conservation laws. Systems of Nonlinear Partial Differential Equations, pp. 25–70, ed. J.M. Ball. Dordrecht: D. Reidel 1983.

    Google Scholar 

  25. Rankine, W.J.M.: On the thermodynamic theory of waves of finite longitudinal disturbance. Phil. Trans. Royal Soc. London 160 (1870), 277–288.

    Article  Google Scholar 

  26. Rayleigh, Lord (J.W. Strutt): Aerial plane waves of finite amplitude. Proc. Royal Soc. London 84A (1910), 247–284.

    Google Scholar 

  27. Zeldovich, Ya. and Yu. Raizer: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vols. I—I1. New York: Academic Press, 1966–1967.

    Google Scholar 

  28. Gilbarg, D.: The existence and limit behavior of the one-dimensional shock layer. Am. J. Math. 73 (1951), 256–274.

    Article  MathSciNet  MATH  Google Scholar 

  29. Gelfand, I.: Some problems in the theory of quasilinear equations. Usp. Mat. Nauk 14 (1959), 87–158. English translation: AMS Translations, Ser. II, 29, 295–381.

    Google Scholar 

  30. Majda, A. and R. Pego: Stable viscosity matrices for systems of conservation laws. J. Diff. Eqs. 56 (1985), 229–262.

    Article  MathSciNet  MATH  Google Scholar 

  31. Foy, R.L.: Steady state solutions of hyperbolic systems of conservation laws with viscosity terms. Comm. Pure Appl. Math. 17 (1964), 177–188.

    MathSciNet  MATH  Google Scholar 

  32. Mock, M.S.: A topological degree for orbits connecting critical points of autonomous systems. J. Diff. Eqs. 38 (1980), 176–191.

    Article  MathSciNet  MATH  Google Scholar 

  33. Smoller, J.: Shock Waves and Reaction-Diffusion Equations ( Second Edition ). New York: Springer, 1994.

    MATH  Google Scholar 

  34. Majda, A. and R. Pego: Stable viscosity matrices for systems of conservation laws. J. Diff. Eqs. 56 (1985), 229–262.

    Article  MathSciNet  MATH  Google Scholar 

  35. Pego, R.L.: Stable viscosities and shock profiles for systems of conservation laws. Trans. AMS 282 (1984), 749–763.

    Article  MathSciNet  MATH  Google Scholar 

  36. Antman, S.S. and R. Malek-Madani: Traveling waves in nonlinearly viscoelastic media and shock structure in elastic media. Quart. Appl. Math. 46 (1988), 77–93.

    MathSciNet  MATH  Google Scholar 

  37. Pego, R.L.: Nonexistence of a shock layer in gas dynamics with a nonconvex equation of state. Arch. Rational Mech. Anal. 94 (1986), 165–178.

    MathSciNet  MATH  Google Scholar 

  38. Azevedo, A.V., Marchesin, D., Plohr, B.J. and K. Zumbrun: Well-posedness for a class of 2 x 2 conservation laws with Lx data. J. Diff. Eqs. 140 (1997), 161–185.

    Article  MATH  Google Scholar 

  39. Bressan, A. and P. Goatin: Oleinik type estimates and uniqueness for n x n conservation laws. J. Diff. Eqs. 156 (1999), 26–49.

    Article  MathSciNet  MATH  Google Scholar 

  40. Goodman, J.: Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch. Rational Mech. Anal. 95 (1986), 325–344.

    MATH  Google Scholar 

  41. Liu, T.-P.: Nonlinear stability of shock waves for viscous conservation laws. Memoirs AMS 56 (1985), No. 328.

    Google Scholar 

  42. Liu, T.-P. and Z. Xin: Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations. Comm. Math. Phys. 118 (1986), 451–465.

    Article  MathSciNet  Google Scholar 

  43. Liu, T.-P. and K. Zumbrun: On nonlinear stability of general undercompressive viscous shock waves. Comm. Math. Phys. 174 (1995), 319–345.

    Article  MathSciNet  MATH  Google Scholar 

  44. Szepessy A. and K. Zumbrun: Stability of rarefaction waves in viscous media. Arch. Rational Mech. Anal. 133 (1996), 249–298.

    Google Scholar 

  45. Benabdallah, A. and D. Serre: Problèmes aux limites pour des systèmes hyperboliques nonlinéaires de deux equations à une dimension d’espace. C. R. Acad. Sc1. Paris, Série I, 305 (1987), 677–680.

    MathSciNet  MATH  Google Scholar 

  46. Kawashima, S. and A. Matsumura: Stability of shock profiles in viscoelasticity with non-convex constitutive relations. Comm. Pure Appl. Math. 47 (1994), 1547–1569.

    MathSciNet  Google Scholar 

  47. Liu, T.-P.: Pointwise convergence to shock waves for viscous conservation laws. Comm. Pure Appl. Math. 50 (1997), 1113–1182.

    MATH  Google Scholar 

  48. Liu, T.-P., Matsumura, A. and K. Nishihara: Behavior of solutions for the Burgers equation with boundary corresponding to rarefaction waves. SIAM J. Math. Anal. 29 (1998), 293–308.

    MathSciNet  MATH  Google Scholar 

  49. Liu, T.-P. and Z. Xin: Stability of viscous shock waves associated with a system of nonstrictly hyperbolic conservation laws. Comm. Pure Appl. Math. 45 (1992), 361–388.

    MathSciNet  Google Scholar 

  50. Liu, T.-P. and Z. Xin: Pointwise decay to contact discontinuities for systems of viscous conservation laws. Asian J. Math. 1 (1997), 34–84.

    MathSciNet  MATH  Google Scholar 

  51. Liu, T.-P. and S.-H. Yu: Propagation of a stationary shock layer in the presence of a boundary. Arch. Rational Mech. Anal. 139 (1997), 57–82.

    MATH  Google Scholar 

  52. Liu, T.-P. and Y. Zeng: Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservaton laws. Memoirs AMS 125 (1997), No. 549.

    Google Scholar 

  53. Liu, T.-P. and Y. Zeng: Compressible Navier-Stokes equations with zero heat conductivity. J. Diff. Eqs. 153 (1999), 225–291.

    Article  MathSciNet  MATH  Google Scholar 

  54. Liu, T.-P. and K. Zumbrun: On nonlinear stability of general undercompressive viscous shock waves. Comm. Math. Phys. 174 (1995), 319–345.

    Article  MathSciNet  MATH  Google Scholar 

  55. Xin, Z.: On the linearized stability of viscous shock profiles for systems of conservation laws. J. Diff. Eqs. 100 (1992), 119–136.

    Article  MATH  Google Scholar 

  56. Xin, Z.: On nonlinear stability of contact discontinuities. Hyperbolic Problems: Theory, Numerics, Applications, pp. 249–257, eds. J. Glimm, M.J. Graham, J.W. Grove and B.J. Plohr. Singapore: World Scientific, 1996.

    Google Scholar 

  57. Zeng, Yanni: Convergence to diffusion waves of solutions to nonlinear viscoelastic model with fading memory. Comm. Math. Phys. 146 (1992), 585–6609.

    Article  MathSciNet  MATH  Google Scholar 

  58. Zeng, Yanni: L’ asymptotic behavior of compressible isentropic viscous I — D flow. Comm. Pure Appl. Math. 47 (1994), 1053–1082.

    MATH  Google Scholar 

  59. Zeng, Yanni: LP asymptotic behavior of solutions to hyperbolic-parabolic systems of conservation laws. Arch. Math. 66 (1996), 310–319.

    Article  MATH  Google Scholar 

  60. Zumbrun K. and P. Howard: Pointwise semigroup methods and stability of viscous shock waves. Indiana U. Math. J. 47 (1998), 63–85.

    MathSciNet  Google Scholar 

  61. Gardner, R.A. and K. Zumbrun: The gap lemma and geometric criteria for instability of viscous shock profiles. Comm. Pure Appl. Math. 51 (1998), 797–855.

    MathSciNet  Google Scholar 

  62. Luo, T. and D. Serre: Linear stability of shock profiles for a rate-type viscoelastic system with relaxation. Quart. Appl. Math. 56 (1998), 569–586.

    MathSciNet  MATH  Google Scholar 

  63. Serre, D.: Solutions à variation bornée pour certains systèmes hyperboliques de lois de conservation. J. Diff. Eqs. 67 (1987), 137–168.

    Article  Google Scholar 

  64. Serre, D.: olutions classiques globales des équations d’Euler pour un fluide parfait compressible. Ann. Inst. Fourier, Grenoble 47 (1997), 139–153.

    Google Scholar 

  65. Fries, C.: Nonlinear asymptotic stability of general small-amplitude viscous Laxian shock waves. J. Diff. Eqs. 146 (1998), 185–202.

    Article  MathSciNet  MATH  Google Scholar 

  66. Fries, C.: Stability of viscous shock waves associated with non-convex modes. Arch. Rational Mech. Anal. (To appear).

    Google Scholar 

  67. Liu, T.-P.: On the viscosity criterion for hyperbolic conservation laws. Viscous Profiles and Numerical Methods for Shock Waves, pp. 105–114, ed. M. Shearer. Philadelphia: SIAM, 1991.

    Google Scholar 

  68. Brio, M. and J.K. Hunter: Rotationally invariant hyperbolic waves. Comm. Pure Appl. Math. Cabannes, H.: (l09), 1037–1053.

    Google Scholar 

  69. Freistühler, H.: Instability of vanishing viscosity approximation to hyperbolic systems of conservation laws with rotational invariance. J. Diff. Eqs. 87 (1990), 205–226.

    Article  MATH  Google Scholar 

  70. Freistühler, H.: Dynamical stability and vanishing viscosity. A case study of a non-strictly hyperbolic system. Comm. Pure Appl. Math. 45 (1992), 561–582.

    MATH  Google Scholar 

  71. Freistühler, H. and T.-P. Liu: Nonlinear stability of overcompressive shock waves in a rotationally invariant system of viscous conservation laws. Comm. Math. Phys. 153 (1993), 147–158.

    Article  MathSciNet  MATH  Google Scholar 

  72. Freistühler, H. and P. Szmolyan: Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves. SIAM J. Math. Anal. 26 (1995), 112–128.

    MATH  Google Scholar 

  73. Abeyaratne, R. and J.K. Knowles: Kinetic relations and the propagation of phase boundaries in solids. Arch. Rational Mech. Anal. 114 (1991), 119–154.

    MathSciNet  MATH  Google Scholar 

  74. Abeyaratne, R. and J.K. Knowles: On the propagation of maximally dissipative phase boundaries in solids. Quart. Appl. Math. 50 (1992), 149–172.

    MathSciNet  MATH  Google Scholar 

  75. Benzoni-Gavage, S.: Stability of subsonic planar phase boundaries in a van der Waals fluid. Arch. Rational Mech. Anal. (To appear).

    Google Scholar 

  76. Hagan, R. and M. Slemrod: The viscosity-capillarity criterion for shocks and phase transitions. Arch. Rational Mech. Anal. 83 (1983), 333–361.

    MathSciNet  MATH  Google Scholar 

  77. James, F., Peng, Y.J. and B. Perthame: Kinetic formulation for chromatography and some other hyperbolic systems. J. Math. Pures Appl. 74 (1995), 367–385.

    MathSciNet  MATH  Google Scholar 

  78. Keyfitz, B.L.: Admissibility conditions for shocks in systems that change type. SIAM J. Math. Anal. 22 (1991), 1284–1292.

    MathSciNet  MATH  Google Scholar 

  79. LeFloch, P.G.: Propagating phase boundaries: formulation of the problem and existence via the Glimm scheme. Arch. Rational Mech. Anal. 123 (1993), 153–197.

    MathSciNet  Google Scholar 

  80. Rosakis, P.: An equal area rule for dissipative kinetics of propagating strain discontinuities. SIAM J. Appt Math. 55 (1995), 100–123.

    MathSciNet  MATH  Google Scholar 

  81. Slemrod, M.: Admissibility criteria for propagating phase boundaries in a van der Waals fluid. Arch. Rational Mech. Anal. 81 (1983), 301–315.

    MathSciNet  MATH  Google Scholar 

  82. Slemrod, M.: Dynamic phase transitions in a van der Waals fluid. J. Diff. Eqs. 52 (1984), 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  83. Truskinovsky, L.: Structure of an isothermal phase discontinuity. Soviet Physics Doklady 30 (1985), 945–948.

    Google Scholar 

  84. Truskinovsky, L.: Transition to detonation in dynamic phase changes. Arch. Rational Mech. Anal. 125 (1994), 375–397.

    MathSciNet  MATH  Google Scholar 

  85. LeFloch, P.G.: Entropy weak solutions to nonlinear hyperbolic systems in nonconservative form. Comm. PDE 13 (1988), 669–727.

    Article  MathSciNet  Google Scholar 

  86. Dal Masso, G., LeFloch, P. and F. Murat: Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74 (1995), 483–548.

    Google Scholar 

  87. Amadori, D., Baiti, P., LeFloch, P.G. and B. Piccoli: Nonclassical shocks and the Cauchy problem for nonconvex conservation laws. J. Diff. Eqs. 151 (1999), 345–372.

    Article  MathSciNet  MATH  Google Scholar 

  88. Hayes, B. and P.G. LeFloch: Nonclassical shocks and kinetic relations: Scalar conservaton laws. Arch. Rational Mech. Anal. 139 (1997), 1–56.

    MathSciNet  MATH  Google Scholar 

  89. Hayes, B. and P.G. LeFloch: Nonclassical shocks and kinetic relations: Strictly hyperbolic systems. SIAM J. Math. Anal. (To appear).

    Google Scholar 

  90. LeFloch, P.G. and A.E. Tzavaras: Representation of weak limits and definition of nonconservative products. SIAM J. Math. Anal. 30 (1999), 1309–1342.

    MathSciNet  MATH  Google Scholar 

  91. LeFloch, P.G.: An introduction to nonclassical shocks of systems of conservation laws. An Introduction to Recent Developments in Theory and Numerics, for Conservation Laws, pp. 28–72, eds. D. Kröner, N. Ohlberger and C. Rohde. Berlin: Springer, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dafermos, C.M. (2000). Admissible Shocks. In: Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der mathematischen Wissenschaften, vol 325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22019-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22019-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22021-4

  • Online ISBN: 978-3-662-22019-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics