Skip to main content

The Initial-Value Problem: Admissibility of Solutions

  • Chapter
  • 731 Accesses

Part of the book series: Grundlehren der mathematischen Wissenschaften ((GL,volume 325))

Abstract

The initial-value problem for a hyperbolic system of conservation laws will be formulated, and classical as well as weak solutions will be considered. Nonuniqueness of weak solutions will be demonstrated in the context of the simplest nonlinear scalar conservation law, the well-known Burgers equation. This raises the need to devise conditions that will weed out unstable, physically irrelevant, or otherwise undesirable solutions, hopefully singling out a unique admissible solution of the initial-value problem. Two admissibility criteria will be introduced in this chapter: The requirement that admissible solutions satisfy a designated entropy inequality; and the principle that the hyperbolic system should be viewed as the “vanishing viscosity” limit of a family of systems with diffusive terms. A preliminary investigation of the compatibility of the above two criteria will be conducted. The chapter will close with remarks on the interpretation of boundary conditions in the context of weak solutions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. Bateman, H.: Some recent researches on the motion of fluids. Monthly Weather Review 43 (1915), 163–170.

    Article  Google Scholar 

  2. Hopf, E.: The partial differential equation u, + uu,- = µu,,. Comm. Pure Appl. Math. 3 (1950), 201–230.

    MathSciNet  MATH  Google Scholar 

  3. Stokes, G.G.: On a difficulty in the theory of sound. Philos. Magazine 33 (1848), 349–356.

    Google Scholar 

  4. Rayleigh, Lord (J.W. Strutt): The Theory of Sound, Vol I1. London: Macmillan, 1878.

    Google Scholar 

  5. Stokes, G.G.: On a difficulty in the theory of sound. Mathematical and Physical Papers, Vol II, pp. 51–55. Cambridge: Cambridge University Press, 1883.

    Google Scholar 

  6. Burton, C.V.: On plane and spherical sound-waves of finite amplitude. Philos. Magazine, ’ cr. 5, Cabannes, H.: (1893), 317–333.

    Google Scholar 

  7. Weber, H.: Die Partiellen Differential-Gleichungen der Mathematischen Physik, Zweiter Band, Vierte Auflage. Braunschweig: Friedrich Vieweg und Sohn, 1901.

    Google Scholar 

  8. Rayleigh, Lord (J.W. Strutt): Note on tidal bores. Proc. Royal Soc. London 81A (1908), 448–449.

    Google Scholar 

  9. Jouguet, E.: Sur la propagation des discontinuités dans les fluides. C. R. Acad. Sc1. Paris 132 (1901), 673–676.

    MATH  Google Scholar 

  10. Kruzkov, S.: First-order quasilinear equations with several space variables. Mat. Sbornik 123 (1970), 228–255. English translation: Math. USSR Sbomik 10 (1970), 217–273.

    Article  Google Scholar 

  11. Lax, P.D.: Shock waves and entropy. Contributions to Functional Analysis pp. 603–634, ed. E.A. Zarantonello. New York: Academic Press, 1971.

    Google Scholar 

  12. Truesdell, C.A. and R.A. Toupin: The Classical Field Theories. Handbuch der Physik, Vol. III/1. Berlin: Springer, 1960.

    Google Scholar 

  13. Truesdell, C.A. and W. Noll: The Non-Linear Field Theories of - Mechanics. Handbuch der Physik, Vol. 111/3. Berlin: Springer, 1965.

    Google Scholar 

  14. Gurtin, M.E.: An Introduction to Continuum Mechanics. New York: Academic Press, 1981.

    MATH  Google Scholar 

  15. Silhavÿ, M.: The Mechanics and Thermodynamic’s of Continuous Media. Berlin: Springer, 1997.

    MATH  Google Scholar 

  16. Ciarlet, P.G.: Mathematical Elasticity. Amsterdam: North-Holland, 1988.

    MATH  Google Scholar 

  17. Hanyga, A.: Mathematical Theory of Non-Linear Elasticity. Warszawa: PWN, 1985.

    Google Scholar 

  18. Marsden, J.E. and T.J.R. Hughes: Mathematical Foundations of Elasticity. Englewood Cliffs: Prentice-Hall, 1983.

    MATH  Google Scholar 

  19. Wang, C.C. and C. Truesdell: Introduction to Rational Elasticity. Leyden: Noordhoff, 1973.

    MATH  Google Scholar 

  20. Antman, S.S.: Nonlinear Problems of Elasticity. New York: Springer, 1995.

    Book  MATH  Google Scholar 

  21. Luo, T. and D. Serre: Linear stability of shock profiles for a rate-type viscoelastic system with relaxation. Quart. Appl. Math. 56 (1998), 569–586.

    MathSciNet  MATH  Google Scholar 

  22. Amadori, D., Baiti, P., LeFloch, P.G. and B. Piccoli: Nonclassical shocks and the Cauchy problem for nonconvex conservation laws. J. Diff. Eqs. 151 (1999), 345–372.

    Article  MathSciNet  MATH  Google Scholar 

  23. Gisclon, M.: Etude des conditions aux limites pour un système strictement hyperbolique via l’approximation parabolique. J. Math. Pures Appl. 75 (1996), 485–508.

    MathSciNet  MATH  Google Scholar 

  24. Gisclon, M. and D. Serre: Etude des conditions aux limites pour un système strictement hyperbolique via l’approximation parabolique. C. R. Acad. Sc1. Paris, Série I, 319 (1994), 377–382.

    MathSciNet  MATH  Google Scholar 

  25. Grenier, E.: Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems. J. Diff. Eqs. 143 (1998), 110–146.

    Article  MathSciNet  MATH  Google Scholar 

  26. Hayes, B. and P.G. LeFloch: Nonclassical shocks and kinetic relations: Scalar conservaton laws. Arch. Rational Mech. Anal. 139 (1997), 1–56.

    MathSciNet  MATH  Google Scholar 

  27. Otto, F.: Initial-boundary value problem for a scalar conservation law. C. R. Acad. Sc1. Paris, Série I, 322 (1996), 729–734.

    MathSciNet  MATH  Google Scholar 

  28. Smoller, J.A., Temple, J.B. and Z.-P. Xin: Instability of rarefaction shocks in systems of conservation laws. Arch. Rational Mech. Anal. 112 (1990), 63–81.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dafermos, C.M. (2000). The Initial-Value Problem: Admissibility of Solutions. In: Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der mathematischen Wissenschaften, vol 325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22019-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22019-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22021-4

  • Online ISBN: 978-3-662-22019-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics