Skip to main content

Part of the book series: Grundlehren der mathematischen Wissenschaften ((GL,volume 325))

  • 727 Accesses

Abstract

The endeavor of solving the initial-value problem for the scalar conservation law, in Chapter VI, owes its spectacular success to the L 1 -contraction property, which applies not only to the solutions themselves but even to their approximations by means of vanishing viscosity, layering, relaxation, etc. For systems, however, the situation is different: L 1-contraction no longer applies; in its place, L 1-Lipschitz continuity will eventually be established, in Chapter XIV, albeit under substantial restrictions on the initial data. Furthermore, at the time of this writing, the requisite stability estimates have been established solely in the context of highly specialized approximating schemes that employ as building blocks the solution of the Riemann problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. Chen, G.-Q. and J. Glimm: Global solutions to the compressible Euler equations with geometric structure. Comm. Math. Phys. 180 (1996), 153–193.

    Article  MathSciNet  MATH  Google Scholar 

  2. Schatzman, M.: Continuous Glimm functionals and uniqueness of solutions of the Riemann problem. Indiana U. Math. J. 34 (1985), 533–589.

    MathSciNet  MATH  Google Scholar 

  3. Nishida, T.: Global solution for an initial boundary value problem of a quasilinear hyperbolic system. Proc. Japan Acad. 44 (1968), 642–646.

    Article  MathSciNet  MATH  Google Scholar 

  4. Smoller J. and B. Temple: Shock wave solutions of the Einstein equations. The Oppenheimer-Snyder model of gravitational collapse extended to the case of nonzero pressure. Arch. Rational Mech. Anal. 128 (1994), 249–297.

    MathSciNet  MATH  Google Scholar 

  5. Poupaud, F., Rascle, M. and J.P. Vila: Global solutions to the isothermal Euler-Poisson system with arbitrarily large data. J. Diff. Eqs. 123 (1995), 93–121.

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang, C.C. and C. Truesdell: Introduction to Rational Elasticity. Leyden: Noordhoff, 1973.

    Google Scholar 

  7. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Comm. Pure Appl. Math. 7 (1954), 159–193.

    MathSciNet  MATH  Google Scholar 

  8. Luo, T. and D. Serre: Linear stability of shock profiles for a rate-type viscoelastic system with relaxation. Quart. Appl. Math. 56 (1998), 569–586.

    MathSciNet  MATH  Google Scholar 

  9. Liu, T.-P.: Initial-boundary value problems for gas dynamics. Arch. Rational Mech. Anal. 64 (1977), 137–168.

    MATH  Google Scholar 

  10. Dubroca, B. and G. Gallice: Résultats d’existence et d’unicité du problème mixte pour des systèmes hyperbolique de lois de conservation monodimensionels. Comm. PDE 15 (1990), 59–80.

    Article  MathSciNet  MATH  Google Scholar 

  11. Frid, H.: Initial-boundary value problems for conservation laws. J. Diff. Eqs. 128 (1996), 1–45.

    Article  MathSciNet  MATH  Google Scholar 

  12. Smoller, J.: Shock Waves and Reaction-Diffusion Equations ( Second Edition ). New York: Springer, 1994.

    MATH  Google Scholar 

  13. Serre, D.: Systèmes de Lois de Conservation, Vols. I-I1. Paris: Diderot, 1996. English translation: Systems of Conservation Laws, Vols. 1–2. Cambridge: Cambridge University Press, 1999.

    Google Scholar 

  14. Liu, T.-P.: Admissible solutions of hyperbolic conservation laws. Memoirs AMS 30 (1981), No. 240.

    Google Scholar 

  15. Young, L.C.: Generalized curves and the existence of an attained absolute minimum in the calculus of variations. Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, Classe III, 30 (1937), 212–234.

    MATH  Google Scholar 

  16. Cheverry, C.: Système de lois de conservations et stabilité BV. Mémoires Soc. Math. France No. 75 (1998).

    Google Scholar 

  17. Alber, H.D.:Local existence of weak solutions to the quasilinear wave equation for large initial values. Math. Z. 190 (1985), 249–276.

    Article  MathSciNet  MATH  Google Scholar 

  18. Schochet, S.: Glimm scheme for systems with almost planar interactions. Comm. PDE 16 (1991), 1423–1440.

    Article  MathSciNet  MATH  Google Scholar 

  19. Schochet, S.: Sufficient conditions for local existence via Glimm’s scheme for large BV data. J. Diff. Eqs. 89 (1991), 317–354.

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, T.-P. and T. Yang: Well-posedness theory for hyperbolic conservation laws. Comm. Pure Appl. Math. 52 (1999), 1553–1586.

    MATH  Google Scholar 

  21. Liu, T.-P.: Admissible solutions of hyperbolic conservation laws. Memoirs AMS 30 (1981), No. 240.

    Google Scholar 

  22. Liu, T.-P.: Linear and nonlinear large-time behavior of solutions of hyperbolic conservation laws. Comm. Pure Appl. Math. 30 (1977), 767–796.

    MATH  Google Scholar 

  23. Liu, T.-P.: Asymptotic behavior of solutions of general systems of nonlinear hyperbolic conservation laws. Indiana U. Math. J. 27 (1978), 211–253.

    MATH  Google Scholar 

  24. Liu, T.-P.: Quasilinear hyperbolic systems. Comm. Math. Phys. 68 (1979), 141–172.

    Article  MathSciNet  MATH  Google Scholar 

  25. Dafermos, C.M.: A system of hyperbolic conservation laws with frictional damping. ZAMP, Special Issue, 46 (1995), S294–S307.

    Google Scholar 

  26. Jenssen, H.K.: Blowup for systems of conservation laws. SIAM J. Appl. Math. (To appear).

    Google Scholar 

  27. Jeffrey, A.: Quasilinear Hyperbolic Systems and Waves. London: Pitman, 1976.

    Google Scholar 

  28. Joly, J.-L., Métivier, G. and J. Rauch: A nonlinear instability for 3 x 3 systems of conservation laws. Comm. Math. Phys. 162 (1994), 47–59.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dafermos, C.M. (2000). The Random Choice Method. In: Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der mathematischen Wissenschaften, vol 325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22019-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22019-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22021-4

  • Online ISBN: 978-3-662-22019-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics