The Random Choice Method

  • Constantine M. Dafermos
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 325)

Abstract

The endeavor of solving the initial-value problem for the scalar conservation law, in Chapter VI, owes its spectacular success to the L 1 -contraction property, which applies not only to the solutions themselves but even to their approximations by means of vanishing viscosity, layering, relaxation, etc. For systems, however, the situation is different: L 1-contraction no longer applies; in its place, L 1-Lipschitz continuity will eventually be established, in Chapter XIV, albeit under substantial restrictions on the initial data. Furthermore, at the time of this writing, the requisite stability estimates have been established solely in the context of highly specialized approximating schemes that employ as building blocks the solution of the Riemann problem.

Keywords

Entropy Assure Expense Gall Summing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. 1.
    Chen, G.-Q. and J. Glimm: Global solutions to the compressible Euler equations with geometric structure. Comm. Math. Phys. 180 (1996), 153–193.MathSciNetMATHCrossRefGoogle Scholar
  2. 1.
    Schatzman, M.: Continuous Glimm functionals and uniqueness of solutions of the Riemann problem. Indiana U. Math. J. 34 (1985), 533–589.MathSciNetMATHGoogle Scholar
  3. 1.
    Nishida, T.: Global solution for an initial boundary value problem of a quasilinear hyperbolic system. Proc. Japan Acad. 44 (1968), 642–646.MathSciNetMATHCrossRefGoogle Scholar
  4. 1.
    Smoller J. and B. Temple: Shock wave solutions of the Einstein equations. The Oppenheimer-Snyder model of gravitational collapse extended to the case of nonzero pressure. Arch. Rational Mech. Anal. 128 (1994), 249–297.MathSciNetMATHGoogle Scholar
  5. 1.
    Poupaud, F., Rascle, M. and J.P. Vila: Global solutions to the isothermal Euler-Poisson system with arbitrarily large data. J. Diff. Eqs. 123 (1995), 93–121.MathSciNetMATHCrossRefGoogle Scholar
  6. 1.
    Wang, C.C. and C. Truesdell: Introduction to Rational Elasticity. Leyden: Noordhoff, 1973.Google Scholar
  7. 1.
    Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Comm. Pure Appl. Math. 7 (1954), 159–193.MathSciNetMATHGoogle Scholar
  8. 1.
    Luo, T. and D. Serre: Linear stability of shock profiles for a rate-type viscoelastic system with relaxation. Quart. Appl. Math. 56 (1998), 569–586.MathSciNetMATHGoogle Scholar
  9. 7.
    Liu, T.-P.: Initial-boundary value problems for gas dynamics. Arch. Rational Mech. Anal. 64 (1977), 137–168.MATHGoogle Scholar
  10. 1.
    Dubroca, B. and G. Gallice: Résultats d’existence et d’unicité du problème mixte pour des systèmes hyperbolique de lois de conservation monodimensionels. Comm. PDE 15 (1990), 59–80.MathSciNetMATHCrossRefGoogle Scholar
  11. 1.
    Frid, H.: Initial-boundary value problems for conservation laws. J. Diff. Eqs. 128 (1996), 1–45.MathSciNetMATHCrossRefGoogle Scholar
  12. 1.
    Smoller, J.: Shock Waves and Reaction-Diffusion Equations ( Second Edition ). New York: Springer, 1994.MATHGoogle Scholar
  13. 9.
    Serre, D.: Systèmes de Lois de Conservation, Vols. I-I1. Paris: Diderot, 1996. English translation: Systems of Conservation Laws, Vols. 1–2. Cambridge: Cambridge University Press, 1999.Google Scholar
  14. 11.
    Liu, T.-P.: Admissible solutions of hyperbolic conservation laws. Memoirs AMS 30 (1981), No. 240.Google Scholar
  15. 1.
    Young, L.C.: Generalized curves and the existence of an attained absolute minimum in the calculus of variations. Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, Classe III, 30 (1937), 212–234.MATHGoogle Scholar
  16. 3.
    Cheverry, C.: Système de lois de conservations et stabilité BV. Mémoires Soc. Math. France No. 75 (1998).Google Scholar
  17. 1.
    Alber, H.D.:Local existence of weak solutions to the quasilinear wave equation for large initial values. Math. Z. 190 (1985), 249–276.MathSciNetMATHCrossRefGoogle Scholar
  18. 3.
    Schochet, S.: Glimm scheme for systems with almost planar interactions. Comm. PDE 16 (1991), 1423–1440.MathSciNetMATHCrossRefGoogle Scholar
  19. 4.
    Schochet, S.: Sufficient conditions for local existence via Glimm’s scheme for large BV data. J. Diff. Eqs. 89 (1991), 317–354.MathSciNetMATHCrossRefGoogle Scholar
  20. 4.
    Liu, T.-P. and T. Yang: Well-posedness theory for hyperbolic conservation laws. Comm. Pure Appl. Math. 52 (1999), 1553–1586.MATHGoogle Scholar
  21. 11.
    Liu, T.-P.: Admissible solutions of hyperbolic conservation laws. Memoirs AMS 30 (1981), No. 240.Google Scholar
  22. 6.
    Liu, T.-P.: Linear and nonlinear large-time behavior of solutions of hyperbolic conservation laws. Comm. Pure Appl. Math. 30 (1977), 767–796.MATHGoogle Scholar
  23. 8.
    Liu, T.-P.: Asymptotic behavior of solutions of general systems of nonlinear hyperbolic conservation laws. Indiana U. Math. J. 27 (1978), 211–253.MATHGoogle Scholar
  24. 10.
    Liu, T.-P.: Quasilinear hyperbolic systems. Comm. Math. Phys. 68 (1979), 141–172.MathSciNetMATHCrossRefGoogle Scholar
  25. 20.
    Dafermos, C.M.: A system of hyperbolic conservation laws with frictional damping. ZAMP, Special Issue, 46 (1995), S294–S307.Google Scholar
  26. 1.
    Jenssen, H.K.: Blowup for systems of conservation laws. SIAM J. Appl. Math. (To appear).Google Scholar
  27. 2.
    Jeffrey, A.: Quasilinear Hyperbolic Systems and Waves. London: Pitman, 1976.Google Scholar
  28. 2.
    Joly, J.-L., Métivier, G. and J. Rauch: A nonlinear instability for 3 x 3 systems of conservation laws. Comm. Math. Phys. 162 (1994), 47–59.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Constantine M. Dafermos
    • 1
  1. 1.Division of Applied MathematicsBrown UniversityProvidenceUSA

Personalised recommendations