Skip to main content

Genuinely Nonlinear Scalar Conservation Laws

  • Chapter
Hyperbolic Conservation Laws in Continuum Physics

Part of the book series: Grundlehren der mathematischen Wissenschaften ((GL,volume 325))

  • 734 Accesses

Abstract

Despite its apparent simplicity, the genuinely nonlinear scalar conservation law in one-space dimension possesses a surprisingly rich theory, which deserves attention, not only for its intrinsic interest, but also because it provides valuable insight in the behavior of systems. The discussion here will employ the theory of generalized characteristics developed in Chapter X. From the standpoint of this approach, the special feature of genuinely nonlinear scalar conservation laws is that the extremal backward generalized characteristics are essentially classical characteristics, that is straight lines along which the solution is constant. This property induces such a heavy constrain that one is able to derive very precise information on regularity and large time behavior of solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. Hopf, E.: The partial differential equation u, + uu,- = µu,,. Comm. Pure Appl. Math. 3 (1950), 201–230.

    MathSciNet  MATH  Google Scholar 

  2. Oleinik, O.A.: The Cauchy problem for nonlinear equations in a class of discontinuous functions. Dokl. Akad. Nauk SSSR 95 (1954), 451–454. English translation: AMS Translations, Ser. I1, 42, 7–12.

    Google Scholar 

  3. Oleinik, O.A.: Discontinuous solutions of non-linear differential equations. Usp. Mat. Nauk 12 (1957), 3–73. English translation: AMS Translations, Ser. II, 26, 95–172.

    Google Scholar 

  4. Oleinik, O.A.: Uniqueness and stability of the generalized solution of the Cauchy problem for quasi-linear equation. Usp. Mat. Nauk 14 (1959), 165–170. English translation: AMS Translations, Ser. II, 33, 285–290.

    Google Scholar 

  5. Friedrichs, K.O. and P.D. Lax: Systems of conservation equations with a convex extension. Proc. Natl. Acad. Sc1. USA 68 (1971), 1686–1688.

    Article  MathSciNet  MATH  Google Scholar 

  6. Smoller, J.: Shock Waves and Reaction-Diffusion Equations ( Second Edition ). New York: Springer, 1994.

    MATH  Google Scholar 

  7. Lax, P.D.: Hyperbolic systems of conservation laws. Comm. Pure Appl. Math. 10 (1957), 537566.

    Google Scholar 

  8. Schaeffer, D.: Sablé-Tougeron, M.: Méthode de Glimm et problème mixte. Ann. Inst. Henri Poincaré 10 (1993), 423–443.1. A regularity theorem for conservation laws. Adv. in Math. 11 (1973), 368–386.

    MathSciNet  MATH  Google Scholar 

  9. Ilin, A.M. and O.A. Oleinik: Behavior of the solutions of the Cauchy problem for certain quasilinear equations for unbounded increase of the time. Dokl. Akad. Nauk SSSR 120 (1958), 25–28. English translation: AMS Translations, Scr. II, 42, 19–23.

    Google Scholar 

  10. Lions, P.-L.: Generalized Solutions of Hamilton-Jacobi Equations. London: Pitman, 1982.

    Google Scholar 

  11. Dafermos, C.M.: Characteristics in hyperbolic conservation laws. Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. I, pp. 1–58, ed. R.J. Knops. London: Pitman, 1977.

    Google Scholar 

  12. Dafermos, C.M.: Generalized characteristics and the structure of solutions of hyperbolic conservation laws. Indiana U. Math. J. 26 (1977), 1097–1119.

    MathSciNet  MATH  Google Scholar 

  13. Dafermos, C.M.: Regularity and large time behavior of solutions of a conservation law without convexity. Proc. Royal Soc. Edinburgh 99A (1985), 201–239.

    Google Scholar 

  14. Jenssen, H.K.: A note on the spreading of characteristics for nonconvex conservation laws. (Preprint).

    Google Scholar 

  15. Nickel, K.: Gestaltaussagen über Lösungen parabolischer Differentialgleichungen. J. Reine Angew. Math. 211 (1962), 78–94.

    MathSciNet  MATH  Google Scholar 

  16. Matano, H.: Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation. J. Fac. Sc1. Univ. Tokyo, Sect. IA 29 (1982), 401–441.

    MathSciNet  MATH  Google Scholar 

  17. Quinn, B. (B.L. Keyfitz): Solutions with shocks: an example of an L1-contraction semi-group. Comm. Pure Appl. Math. 24 (1971), 125–132.

    MathSciNet  Google Scholar 

  18. Liu, T.-P. and T. Yang: L, stability of conservation laws with coinciding Hugoniot and characteristic curves. Indiana U. Math. J. (To appear).

    Google Scholar 

  19. Rezakhanlou, F.: Microscopic structure of shocks in one-conservation laws. Ann. Inst. Henri Poincaré 12 (1995), 119–153.

    MathSciNet  MATH  Google Scholar 

  20. Dafermos, C.M.: Generalized characteristics and the structure of solutions of hyperbolic conservation laws. Indiana U. Math. J. 26 (1977), 1097–1119.

    MathSciNet  MATH  Google Scholar 

  21. Dafermos, C.M.: Trend to steady state in a conservation law with spatial inhomogeneity. Quart. Appl. Math. 45 (1987), 313–319.

    MathSciNet  MATH  Google Scholar 

  22. Lyberopoulos, A.N.: Large-time structure of solutions of scalar conservation laws without convexity in the presence of a linear source field. J. Diff. Eqs. 99 (1992), 342–380.

    Article  MathSciNet  MATH  Google Scholar 

  23. Lyberopoulos, A.N.: A Poincaré-Bendixson theorem for scalar balance laws. Proc. Royal Soc. Edinburgh 124A (1994), 589–607.

    Article  MathSciNet  Google Scholar 

  24. Fan H.-T. and J.K. Hale: Large time behavior in inhomogeneous conservation laws. Arch. Rational Mech. Anal. 125 (1993), 201–216.

    MathSciNet  MATH  Google Scholar 

  25. Fan H.-T. and J.K. Hale: Attractors in inhomogeneous conservation laws and parabolic regularizations. Trans. AMS 347 (1995), 1239–1254.

    Article  MathSciNet  MATH  Google Scholar 

  26. Härterich, J.: Heteroclinic orbits between rotating waves in hyperbolic balance laws. Proc. Royal Soc. Edinburgh 129A (1999), 519–538.

    Article  Google Scholar 

  27. Fan, H., Jin S. and Z.-H. Teng: Zero reaction limit for hyperbolic conservation laws with source terms. J. Diff. Eqs. (To appear).

    Google Scholar 

  28. Federer, H.: Geometric Measure Theory. New York: Springer, 1969.

    MATH  Google Scholar 

  29. Freistühler, H. and T.-P. Liu: Nonlinear stability of overcompressive shock waves in a rotationally invariant system of viscous conservation laws. Comm. Math. Phys. 153 (1993), 147–158.

    Article  MathSciNet  MATH  Google Scholar 

  30. Mascia, C. and C. Sinestrari: The perturbed Riemann problem for a balance law. Adv. Diff. Eqs. 2 (1997), 779–810.

    MathSciNet  MATH  Google Scholar 

  31. Choksi, R.: The conservation law 80u + 8,rß/1–u2 = 0 and deformations of fibre reinforced materials. SIAM J. Appl. Math. 56 (1996), 1539–1560.

    MathSciNet  MATH  Google Scholar 

  32. Coquel, F. and P.G. LeFloch: Convergence of finite difference schemes for conservation laws in several space variables: a general theory. SIAM J. Num. Anal. 30 (1993), 675–700.

    Article  MathSciNet  MATH  Google Scholar 

  33. Coquel, F. and B. Perthame: Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics. SIAM J. Num. Anal. 35 (1998), 2223–2249.

    Article  MathSciNet  MATH  Google Scholar 

  34. Corli, A. and M. Sablé-Tougeron: Perturbations of bounded variation of a strong shock wave. J. Diff Eqs. 138 (1997), 195–228.

    Article  MATH  Google Scholar 

  35. Cosserat, E. and F.: Théorie des Corps Déf trmables. Paris: Hermann, 1909.

    Google Scholar 

  36. Courant, R. and K.O. Friedrichs: Supersonic Flow and Shock Waves. New York: Wiley-Interscience, 1948. Crandall, M.G.

    Google Scholar 

  37. Courant, R. and K.O. Friedrichs: The semigroup approach to first-order quasilinear equations in several space varibles. Israel J. Math. 12 (1972), 108–132.

    Google Scholar 

  38. Crandall, M.G. and T.M. Liggett: Generation of semi-groups of nonlinear transformations of general Banach spaces. Amer. J. Math. 93 (1971), 265–298.

    Article  MathSciNet  MATH  Google Scholar 

  39. Crandall, M.G. and A. Majda: The method of fractional steps for conservation laws. Math. Comput. 34 (1980), 285–314.

    MATH  Google Scholar 

  40. Crasta G. and B. Piccoli: Viscosity solutions and uniqueness for systems of inhomogeneous balance laws. Discr. Cont. Dyn. Syst. 3 (1997), 477–502.

    Article  MathSciNet  MATH  Google Scholar 

  41. Dacorogna, B.: Weak Continuity and Weak Lower Semicontinuity of Non-Linear Functionals. Lecture Notes in Math. 922 (1982). Berlin: Springer.

    Google Scholar 

  42. Dafermos, C.M.: Asymptotic behavior of solutions of a hyperbolic conservation law. J. Diff. Eqs. 11 (1972), 416–424.

    Article  MathSciNet  MATH  Google Scholar 

  43. Dafermos, C.M.: Polygonal approximations of solutions of the initial value problem for a conservation law. J. Math. Anal. Appl. 38 (1972), 33–41.

    Article  MathSciNet  Google Scholar 

  44. Dafermos, C.M.: The entropy rate admissibility criterion for solutions of hyperbolic conservation laws. J. Diff. Eqs. 14 (1973), 202–212.

    Article  MathSciNet  MATH  Google Scholar 

  45. Dafermos, C.M.: Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method. Arch. Rational Mech. Anal. 52 (1973), 1–9.

    MathSciNet  MATH  Google Scholar 

  46. Dafermos, C.M.: Structure of solutions of the Riemann problem for hyperbolic systems of conservation laws. Arch. Rational Mech. Anal. 53 (1974), 203–217.

    MathSciNet  MATH  Google Scholar 

  47. Dafermos, C.M.: Quasilinear hyperbolic systems that result from conservation laws. Nonlinear Waves, pp. 82–102, ed. S. Leibovich and A. R. Seebass. Ithaca: Cornell U. Press, 1974.

    Google Scholar 

  48. Dafermos, C.M.: Characteristics in hyperbolic conservation laws. Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. I, pp. 1–58, ed. R.J. Knops. London: Pitman, 1977.

    Google Scholar 

  49. Dafermos, C.M.: Generalized characteristics and the structure of solutions of hyperbolic conservation laws. Indiana U. Math. J. 26 (1977), 1097–1119.

    MathSciNet  MATH  Google Scholar 

  50. Dafermos, C.M.: The second law of thermodynamics and stability. Arch. Rational Mech. Anal. 70 (1979), 167–179.

    MathSciNet  MATH  Google Scholar 

  51. Ballou, D.: Solutions to nonlinear hyperbolic Cauchy problems without convexity conditions. Trans. AMS 152 (1970), 441–460.

    Article  MathSciNet  MATH  Google Scholar 

  52. Ballou, D.: Weak solutions with a dense set of discontinuities. J. Diff. Eqs. 10 (1971), 270–280.

    Article  MathSciNet  Google Scholar 

  53. Guckenheimer, J.: Solving a single conservaton law. Lecture Notes in Math. 468 (1975), 108–134. Berlin: Springer.

    Google Scholar 

  54. Hedstrom, G.W.: Some numerical experiments with Dafermos’s method for nonlinear hyperbolic equations. Lecture Notes in Math. 267 (1972), 117–138. Berlin: Springer.

    Google Scholar 

  55. Cheverry, C.: Regularizing effects for multidimensional scalar conservation laws. Ann. Inst. Henri Poincaré. (To appear).

    Google Scholar 

  56. Dafermos, C.M.: Asymptotic behavior of solutions of a hyperbolic conservation law. J. Diff. Eqs. 11 (1972), 416–424.

    Article  MathSciNet  MATH  Google Scholar 

  57. Dafermos, C.M.: Regularity and large time behavior of solutions of a conservation law without convexity. Proc. Royal Soc. Edinburgh 99A (1985), 201–239.

    Google Scholar 

  58. Greenberg, J.M. and D.D.M. Tong: Decay of periodic solutions of iTu + A. f (u) = 0. J. Math. A.al. Appl. 43 (1973), 56–71.

    Article  MathSciNet  MATH  Google Scholar 

  59. Conlon, J.G.: Asymptotic behavior for a hyperbolic conservation law with periodic initial data. Comm. Pure Appl. Math. 32 (1979), 99–112.

    MathSciNet  MATH  Google Scholar 

  60. Cheng, K.-S.: Asymptotic behavior of solutions of a conservation law without convexity conditions. J. Diff. Eqs. 40 (1981), 343–376.

    Article  MATH  Google Scholar 

  61. Cheng, K.-S.: Decay rate of periodic solutions for a conservation law. J. Diff. Eqs. 42 (1981), 390399.

    Google Scholar 

  62. Cheng, K.-S.: A regularity theorem for a nonconvex scalar conservation law. J. Diff. Eqs. 61 (1986), 79–127.

    Article  MATH  Google Scholar 

  63. Weinberger, H.: Long-time behavior for a regularized scalar conservation law in the absence of genuine nonlinearity. Ann. Inst. Henri Poincaré 7 (1990), 407–425.

    MathSciNet  MATH  Google Scholar 

  64. Sinestrari, C.: The Riemann problem for an inhomogeneous conservation law without convexity. SIAM J. Math. Anal. 28 (1997), 109–135.

    MathSciNet  MATH  Google Scholar 

  65. Cheverry, C.: Regularizing effects for multidimensional scalar conservation laws. Ann. Inst. Henri Poincaré. (To appear).

    Google Scholar 

  66. Mascia, C.: Qualitative behavior of conservation laws with reaction term and nonconvex flux. Quart. Appl. Math. (To appear).

    Google Scholar 

  67. Crandall, M.G. and T.M. Liggett: Generation of semi-groups of nonlinear transformations of general Banach spaces. Amer. J. Math. 93 (1971), 265–298.

    Article  MathSciNet  MATH  Google Scholar 

  68. Liu, T.-P. and M. Pierre: Source-solutions and asymptotic behavior in conservation laws. J. Diff. Eqs. 51 (1984), 419–441.

    Google Scholar 

  69. Xu, Xiangsheng: Asymptotic behavior of solutions of hyperbolic conservation laws u, + (u“’), = 0 as m —4 oo with inconsistent initial values. Proc. Royal Soc. Edinburgh 113A (1989), 61–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dafermos, C.M. (2000). Genuinely Nonlinear Scalar Conservation Laws. In: Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der mathematischen Wissenschaften, vol 325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22019-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22019-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22021-4

  • Online ISBN: 978-3-662-22019-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics