Balance Laws

  • Constantine M. Dafermos
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 325)


The ambient space for the balance law will be ℝ k , with typical point X. In the applications to Continuum Physics, ℝ k will stand for physical space, of dimension one, two or three, in the context of statics; and for space-time, of dimension two, three or four, in the context of dynamics.


Weak Solution Open Subset Field Equation Versus Function Shock Front 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cauchy, A.-L.: Recherches sur l’équilibre et le mouvement intérieur des corps solides ou fluides, élastiques ou non élastiques. Bull. Soc. Philomathique (1823), 9–13.Google Scholar
  2. 2.
    Cauchy, A.-L.: De la pression ou tension dans un corps solide. Exercises de Mathématiques 2 (1827), 42–56.Google Scholar
  3. 2.
    Noll, W.: The foundations of classical mechanics in the light of recent advances in continuum mechanics. The Axiomatic Method, pp. 266–281. Amsterdam: North Holland, 1959.Google Scholar
  4. 1.
    Ziemer, W.P.: Cauchy flux and sets of finite perimenter. Arch. Rational Mech. Anal. 84 (1983), 189–201.MathSciNetMATHGoogle Scholar
  5. 1.
    Anzellotti, G.: Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. 135 (1983), 293–318.MathSciNetMATHCrossRefGoogle Scholar
  6. 1.
    Frid, H.: Initial-boundary value problems for conservation laws. J. Diff. Eqs. 128 (1996), 1–45MathSciNetMATHCrossRefGoogle Scholar
  7. 1.
    Godunov, S.K.: An interesting class of quasilinear systems. Dokl. Akad. Nauk SSSR 139 (1961), 521–523.MathSciNetGoogle Scholar
  8. Godunov, S.K.: English translation: Soviet Math. 2 (1961), 947–949.MATHGoogle Scholar
  9. 2.
    Godunov, S.K.: Elements of Continuum Mechanics. Moscow: Nauka, 1978.Google Scholar
  10. 3.
    Godunov, S.K.: Lois de conservation et integrales d’énergie des équations hyperboliques. Lecture Notes in Math. 1270 (1987), 135–149. Berlin: Springer.Google Scholar
  11. 1.
    Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Comm. Pure Appl. Math. 7 (1954), 159–193.MathSciNetMATHGoogle Scholar
  12. 1.
    Boillat, G.: La Propagation des Ondes. Paris: Gauthier-Villars, 1965.MATHGoogle Scholar
  13. 1.
    Ruggeri, T. and A. Strumia: Main field and convex covariant density for quasilinear hyperbolic systems. Ann. Inst. Henri Poincaré, Section A, 34 (1981), 65–84.MathSciNetMATHGoogle Scholar
  14. 1.
    Stokes, G.G.: On a difficulty in the theory of sound. Philos. Magazine 33 (1848), 349–356.Google Scholar
  15. 1.
    Christoffel, E.B.: Untersuchungen über die mit der Fortbestehen linearer partieller Differentialgleichungen verträglichen Unstetigkeiten. Ann. Mat. Pura Appl. 8 (1877), 81–113.MATHCrossRefGoogle Scholar
  16. 1.
    Hadamard, J.: Leçons sur la Propagation des Ondes et les Equations de 1 ‘Hydrodynamique. Paris: Hermann, 1903.Google Scholar
  17. 1.
    Hölder, E.: Historischer Überblick zur mathematischen Theorie von Unstetigkeitswellen seit Riemann und Christoffel. E.B. Christoffel, pp. 412–434, ed. P.L. Butzer and F. Fehér. Basel: Birkhäuser, 1981.Google Scholar
  18. 1.
    Federer, H.: Geometric Measure Theory. New York: Springer, 1969.MATHGoogle Scholar
  19. 1.
    Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Boston: Birkhäuser, 1984.MATHCrossRefGoogle Scholar
  20. 1.
    Evans, L.C. and R.F. Gariepy: Measure Theory and Fine Properties of Functions. Boca Raton: CRC Press, 1992.MATHGoogle Scholar
  21. Ziemer, W.P.: Weakly Differentiable Functions. New York: Springer, 1989.Google Scholar
  22. 1.
    Volpert, A.I.: The spaces BV and quasilinear equations. Mat. Sbornik 73 (1967), 255–302.MathSciNetGoogle Scholar
  23. Volpert, A.I.: English translation: Math. USSR Sbornik 2 (1967), 225–267.CrossRefGoogle Scholar
  24. 8.
    DiPerna, R.J.: Compensated compactness and general systems of conservation laws. Trans. A.M.S. 292 (1985), 283–420.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Constantine M. Dafermos
    • 1
  1. 1.Division of Applied MathematicsBrown UniversityProvidenceUSA

Personalised recommendations