Balance Laws

  • Constantine M. Dafermos
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 325)


The ambient space for the balance law will be ℝ k , with typical point X. In the applications to Continuum Physics, ℝ k will stand for physical space, of dimension one, two or three, in the context of statics; and for space-time, of dimension two, three or four, in the context of dynamics.


Manifold Radon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cauchy, A.-L.: Recherches sur l’équilibre et le mouvement intérieur des corps solides ou fluides, élastiques ou non élastiques. Bull. Soc. Philomathique (1823), 9–13.Google Scholar
  2. 2.
    Cauchy, A.-L.: De la pression ou tension dans un corps solide. Exercises de Mathématiques 2 (1827), 42–56.Google Scholar
  3. 2.
    Noll, W.: The foundations of classical mechanics in the light of recent advances in continuum mechanics. The Axiomatic Method, pp. 266–281. Amsterdam: North Holland, 1959.Google Scholar
  4. 1.
    Ziemer, W.P.: Cauchy flux and sets of finite perimenter. Arch. Rational Mech. Anal. 84 (1983), 189–201.MathSciNetMATHGoogle Scholar
  5. 1.
    Anzellotti, G.: Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. 135 (1983), 293–318.MathSciNetMATHCrossRefGoogle Scholar
  6. 1.
    Frid, H.: Initial-boundary value problems for conservation laws. J. Diff. Eqs. 128 (1996), 1–45MathSciNetMATHCrossRefGoogle Scholar
  7. 1.
    Godunov, S.K.: An interesting class of quasilinear systems. Dokl. Akad. Nauk SSSR 139 (1961), 521–523.MathSciNetGoogle Scholar
  8. Godunov, S.K.: English translation: Soviet Math. 2 (1961), 947–949.MATHGoogle Scholar
  9. 2.
    Godunov, S.K.: Elements of Continuum Mechanics. Moscow: Nauka, 1978.Google Scholar
  10. 3.
    Godunov, S.K.: Lois de conservation et integrales d’énergie des équations hyperboliques. Lecture Notes in Math. 1270 (1987), 135–149. Berlin: Springer.Google Scholar
  11. 1.
    Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Comm. Pure Appl. Math. 7 (1954), 159–193.MathSciNetMATHGoogle Scholar
  12. 1.
    Boillat, G.: La Propagation des Ondes. Paris: Gauthier-Villars, 1965.MATHGoogle Scholar
  13. 1.
    Ruggeri, T. and A. Strumia: Main field and convex covariant density for quasilinear hyperbolic systems. Ann. Inst. Henri Poincaré, Section A, 34 (1981), 65–84.MathSciNetMATHGoogle Scholar
  14. 1.
    Stokes, G.G.: On a difficulty in the theory of sound. Philos. Magazine 33 (1848), 349–356.Google Scholar
  15. 1.
    Christoffel, E.B.: Untersuchungen über die mit der Fortbestehen linearer partieller Differentialgleichungen verträglichen Unstetigkeiten. Ann. Mat. Pura Appl. 8 (1877), 81–113.MATHCrossRefGoogle Scholar
  16. 1.
    Hadamard, J.: Leçons sur la Propagation des Ondes et les Equations de 1 ‘Hydrodynamique. Paris: Hermann, 1903.Google Scholar
  17. 1.
    Hölder, E.: Historischer Überblick zur mathematischen Theorie von Unstetigkeitswellen seit Riemann und Christoffel. E.B. Christoffel, pp. 412–434, ed. P.L. Butzer and F. Fehér. Basel: Birkhäuser, 1981.Google Scholar
  18. 1.
    Federer, H.: Geometric Measure Theory. New York: Springer, 1969.MATHGoogle Scholar
  19. 1.
    Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Boston: Birkhäuser, 1984.MATHCrossRefGoogle Scholar
  20. 1.
    Evans, L.C. and R.F. Gariepy: Measure Theory and Fine Properties of Functions. Boca Raton: CRC Press, 1992.MATHGoogle Scholar
  21. Ziemer, W.P.: Weakly Differentiable Functions. New York: Springer, 1989.Google Scholar
  22. 1.
    Volpert, A.I.: The spaces BV and quasilinear equations. Mat. Sbornik 73 (1967), 255–302.MathSciNetGoogle Scholar
  23. Volpert, A.I.: English translation: Math. USSR Sbornik 2 (1967), 225–267.CrossRefGoogle Scholar
  24. 8.
    DiPerna, R.J.: Compensated compactness and general systems of conservation laws. Trans. A.M.S. 292 (1985), 283–420.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Constantine M. Dafermos
    • 1
  1. 1.Division of Applied MathematicsBrown UniversityProvidenceUSA

Personalised recommendations