Mathematical methods of operational research

  • I. N. Bronshtein
  • K. A. Semendyayev


If in a problem of linear optimization, for instance, in the LOP form (see 6.1.1) it is additionally required that all or some of the variables should take only integral values, the problem is said to be integral.


Linear Optimization Matrix Game Quadratic Optimization Problem Linear Optimization Problem Transition Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [9.1]
    M. S. Bazaraa and J. J. Jarvis, Linear programming and network flows, Wiley, New York-London, 1977.MATHGoogle Scholar
  2. [9.2]
    V. Chachra, P. M. Ghane, and J. M. Moore, Applications of graph theory algorithms, North-Holland, New York-Oxford, 1979.MATHGoogle Scholar
  3. [9.3]
    Sven Dano, Linear programming in industry, 4th ed., Springer-Verlag, Berlin-Heidelberg-New York, 1974.MATHCrossRefGoogle Scholar
  4. [9.4]
    D. Gale, The theory of linear economic models, McGraw-Hill, New York-London, 1960.Google Scholar
  5. [9.5]
    R. S. Garfinkel and G. L. Nemhauser, Integer programming, Wiley, New York-London, 1972.MATHGoogle Scholar
  6. [9.6]
    A. Ghosal, S. G. Loo, and N. Singh, Examples and exercises in operations research, Gordon & Breach, New York-London, 1975.MATHGoogle Scholar
  7. [9.7]
    S. K. Gupta and J. M. Cozzolino, Fundament ales of operations research for management, Holden-Day, San Francisco-London, 1975.Google Scholar
  8. [9.8]
    G. Y. Handler and P. B. Mirchandani, Location in network theory and algorithms, MIT Press, Cambridge, MA, London, 1979.Google Scholar
  9. [9.9]
    N. A. J. Hastings, Dynamic programming, Gordon & Breach, New York-London, 1975.Google Scholar
  10. [9.10]
    J. P. Ignizio and J. N. D. Gupta, Operations research in decision making, Crane, Russak & Co., New York, 1975.Google Scholar
  11. [9.11]
    J. L. Kennington and R. V. Helgason, Algorithms for network programming, Wiley, New York-London, 1980.MATHGoogle Scholar
  12. [9.12]
    E. L. Lowler, Combinatorial optimization: networks and matroids, Holt, Rinehart and Winston, New York-London, 1976.Google Scholar
  13. [9.13]
    V. L. Makarov and A. M. Rubinov, Mathematical theory of economic dynamics and equilibrium (translated from the Russian), Springer-Verlag, Berlin-Heidelberg-New York, 1977.MATHGoogle Scholar
  14. [9.14]
    R. M. Nauss, Parametric integer programming, University of Missouri Press, Columbia, MO, 1979.MATHGoogle Scholar
  15. [9.15]
    R. C. Pfaffenberger and D. A. Walker, Mathematical programming in economics and business, Iowa University Press, Ames, 10, 1976.Google Scholar
  16. [9.16]
    J. Ponstein, Approaches to the theory of optimization, Cambridge University Press, Cambridge, 1980.CrossRefGoogle Scholar
  17. [9.17]
    C. van der Panne, Methods for linear and quadratic programming, North-Holland, Amsterdam-London, 1975.MATHGoogle Scholar
  18. [9.18]
    D. A. Wismer and R. Chattergy, Introduction to non-linear optimization: a problem solving approach, North-Holland, Amsterdam-London, 1978.Google Scholar
  19. [9.19]
    G. Zoutendijk, Mathematical programming methods, North-Holland, Amsterdam-London, 1976.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • I. N. Bronshtein
  • K. A. Semendyayev

There are no affiliations available

Personalised recommendations