Skip to main content

Glycoproteins and Cell Adhesion Functions

  • Chapter
Glycoproteins and Human Disease

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

  • 105 Accesses

Abstract

Oligosaccharide structures of glycoproteins differ between species, organs and cell types and are associated with a wide range of biological functions. Glycosylation patterns often fluctuate during growth, development and differentiation. The role of carbohydrate has been studied following the removal or modifications of carbohydrate by enzymic or chemical methods such as: with lectins and anticarbohydrate antibodies, by inhibition of certain steps in the biosynthetic pathways, by the use of mutant cell lines lacking enzymes involved in carbohydrate processing, by the introduction of genes or knocking out of genes or mRNA coding for glycosyltransferases, or by the expression of mammalian glycoproteins in systems differing in glycosylation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roseman S. The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion. Chem Phys Lipids 1970; 5: 270–297.

    Article  PubMed  CAS  Google Scholar 

  2. Pigott R, Power C. The Adhesion Molecule Factsbook. Academic Press, San Diego CA 1993: 115–120.

    Google Scholar 

  3. Rutishauser U. Neural cell adhesion molecule and polysialic acid. In:McDonald J, Mecham R, eds. Receptors for Extracellular Matrix. San Diego CA: Academic Press, 1991: 131–156.

    Google Scholar 

  4. Fredette B, Rutishauser U, Landmesser L. Regulation and activity-dependence of Ncadherin, NCAM isoforms and polysialic acid on chick myotubes during development. J Cell Biol 1993; 123: 1867–1888.

    Article  PubMed  CAS  Google Scholar 

  5. Nakayama J, Fukuda MN, Fredette B et al. Expression cloning of a human polysialyltransferase that forms the polysialylated neural cell adhesion molecule present in embryonic brain. Proc Natl Acad Sci USA 1995; 92: 7031–7035.

    Article  PubMed  CAS  Google Scholar 

  6. Crocker P, Mucklow S, Bouckson V et al. Sialoadhesion, a macrophage sialic acid binding receptor for hematopoietic cells with 17 immunoglobulin-like domains. EMBO J 1994; 13: 4490–4503.

    PubMed  CAS  Google Scholar 

  7. Clark E. CD22, a B cell-specific receptor, mediates adhesion and signal transduction. J Immun 1993; 150: 4715–4718.

    PubMed  CAS  Google Scholar 

  8. Kelm S, Schauer R, Manuguerra J et al. Modifications of cell surface sialic acids modulate cell adhesion mediated by sialoadhesion and CD22. Glycoconj J 1994; 11: 576–585.

    Article  PubMed  CAS  Google Scholar 

  9. Powell L, Jain R, Matta K et al. Characterization of sialyloligosaccharide binding by recombinant soluble and native cell-associated CD22. J Biol Chem 1995; 270: 7523–7532.

    Article  PubMed  CAS  Google Scholar 

  10. Salmi M, Jalkanen S. Human vascular adhesion protein 1 (VAP-1) is a unique sialoglycoprotein that mediates carbohydrate-dependent binding of lymphocytes to endothelial cells. J Exp Med 1996; 183: 569–579.

    Article  PubMed  CAS  Google Scholar 

  11. Xie R, Long G. Role of N-linked glycosylation in human osteonectin. J Biol Chem 1995; 270: 23212–23217.

    Article  PubMed  CAS  Google Scholar 

  12. Hansen L, Blue Y, Barone K et al. Functional effects of asparagine-linked oligosaccharide on natural and variant human tissue-type plasminogen activator. J Biol Chem 1988; 263: 15713–15719.

    PubMed  CAS  Google Scholar 

  13. Demetriou M, Nabi IR, Coppolino M et al. Reduced contact-inhibition and substratum adhesion in epithelial cells expressing GlcNAc-Transferase V. J Cell Biol 1995; 130: 383–392.

    Article  PubMed  CAS  Google Scholar 

  14. Eggens I, Fenderson B, Tokoyuni T et al. Specific interaction between Le x and Le x determinants. J Biol Chem 1989; 264: 9476–9484.

    PubMed  CAS  Google Scholar 

  15. Kojima N, Hakomori S. Specific interaction between gangliotriaosylceramide (Gga) and sialosyllactosylceramide (GM3) as a basis for specific cellular recognition between lymphoma and melanoma cells. J Biol Chem 1989; 264: 20159–20162.

    PubMed  CAS  Google Scholar 

  16. Misevic G, Burger M. Carbohydrate-carbohydrate interactions of a novel acidic glycan can mediate sponge cell adhesion. J Biol Chem 1993; 268: 4922–4929.

    PubMed  CAS  Google Scholar 

  17. Drickamer K. Three-dimensional view of a selectin cell adhesion molecule. Glycobiology 1994; 4: 245–248.

    Article  PubMed  CAS  Google Scholar 

  18. Hirabayashi J, Ubukata T, Kasai K. Purification and molecular characterization of a novel 16 kDa galectin from the nematode caenorhabditis elegans. J Biol Chem 1996; 271: 2497–2505.

    Article  PubMed  CAS  Google Scholar 

  19. Baranski T, Koelsch G, Hartsuck JA et al. Mapping and molecular modelling of a recognition domain for lysosomal enzyme targeting. J Biol Chem 1991; 266: 23365–23372.

    PubMed  CAS  Google Scholar 

  20. Iobst ST, Drickamer K. Binding of sugar ligands to Ca’-dependent animal lectins. II. Generation of high affinity galactose binding by site-directed mutagenesis. J Biol Chem 1994; 269: 15512–15519.

    PubMed  CAS  Google Scholar 

  21. Ashwell G, Harford J. Carbohydrate-specific receptors of the liver. Ann Rev Biochem 1982; 51: 531–554.

    Article  PubMed  CAS  Google Scholar 

  22. Baenziger J, Maynard Y. Human hepatic lectin. Physiochemical properties and specificity. J Biol Chem 1980; 255: 4607–4613.

    PubMed  CAS  Google Scholar 

  23. Schwartz A, Rup D. Biosynthesis of the human asialoglycoprotein receptor. J Biol Chem 1983; 258: 11249–11255.

    PubMed  CAS  Google Scholar 

  24. Ozaki K, Lee R, Lee Y et al. The differences in structural specificity for recognition and binding between asialoglycoprotein receptors of liver and macrophages. Glycoconj J 1995; 12: 268–274.

    Article  PubMed  CAS  Google Scholar 

  25. Schauer R. Chemistry, metabolism and biological functions of sialic acids. Adv Carbohydr Chem Biochem 1982; 40: 131–234.

    Article  PubMed  CAS  Google Scholar 

  26. Chiu M, Tamura T, Wadhwa M et al. In vivo targeting function of N-linked oligosaccharides with terminating galactose and Nacetylgalactosamine residues. J Biol Chem 1994; 269: 16195–16202.

    PubMed  CAS  Google Scholar 

  27. Hoyle G, Hill R. Molecular cloning and sequencing of a cDNA for a carbohydrate binding receptor unique to rat Kupffer cells. J Biol Chem 1988; 263: 7487–7492.

    PubMed  CAS  Google Scholar 

  28. Hajjar K, Reynolds C. a-Fucose mediated binding and degradation of tissue type plasminogen activator by HepG2 cells. J Clin Invest 1994; 93: 703–710.

    Article  PubMed  CAS  Google Scholar 

  29. Bezouska K, Yuen C-T, O’Brien J et al. Oligosaccharide ligands for NKR-P1 protein activate NK cells and cytotoxicity. Nature 1994; 372: 150–157.

    Article  PubMed  CAS  Google Scholar 

  30. Stahl P. The macrophage mannose receptor:current status. Am J Respir Cell Molec Biol 1990; 2: 317.

    Article  CAS  Google Scholar 

  31. Mullin N, Hall K, Taylor M. Characterization of ligand binding to a carbohydrate-recognition domain of the macrophage mannose receptor. J Biol Chem 1994; 269: 28405–28413.

    PubMed  CAS  Google Scholar 

  32. Barondes SH, Cooper DNW, Gitt MA et al. Galectins. Structure and function of a large family of animal lectins. J Biol Chem 1994; 269: 20807–20810.

    PubMed  CAS  Google Scholar 

  33. Dagher S, Wang S, Wang L et al. Nuclear galectins are functionally redundant in their activity in pre mRNA splicing. Glycoconj J 1995; 12: 545.

    Google Scholar 

  34. Baum L, Seilhamer J, Pang M et al. Synthesis of an endogenous lectin, galectin-1, by human endothelial cells is up-regulated by endothelial cell activation. Glycoconj J 1995; 12: 63–68.

    Article  PubMed  CAS  Google Scholar 

  35. Perillo NL, Pace KE, Seilhamer JJ et al. Apoptosis of T cells mediated by galectin1. Nature 1995; 378: 736–739.

    Article  PubMed  CAS  Google Scholar 

  36. Abbott WM, Hounsell EF, Feizi T. Further studies of oligosaccharide recognition by the soluble 13 kDa lectin of bovine heart muscle. Ability to accomodate the bloodgroup-H and -B-related sequences. Biochem J 1988; 252: 283–287.

    PubMed  CAS  Google Scholar 

  37. Zhou Q, Cummings R. L-14 recognition of laminin and its promotion of in vitro cell adhesion. Arch Biochem Biophys 1993; 300: 6–17.

    Article  PubMed  CAS  Google Scholar 

  38. Cooper D, Cannon V, Farrell E et al. Galectin-1 binds to integrins on vascular smooth muscle cells and inhibits their migration. Glycoconj J 1995; 12: 546.

    Google Scholar 

  39. Ohannesian DW, Lotan D, Thomas P et al. Carcinoembryonic antigen and other glycoconjugates act as ligands for galectin3 in human colon carcinoma cells. Cancer Res 1995; 55: 2191–2199.

    PubMed  CAS  Google Scholar 

  40. Lotan R, Ito H, Yasui W et al. Expression of a 31-kDa lactoside-binding lectin in normal human gastric mucosa and in primary and metastatic gastric carcinomas. Int J Cancer 1994; 56: 474–480.

    Article  PubMed  CAS  Google Scholar 

  41. Schoeppner H, Raz A, Ho S et al. Expression of an endogenous galactose-binding lectin correlated with neoplastic progression in the colon. Cancer 1995; 75: 2818–2826.

    Article  PubMed  CAS  Google Scholar 

  42. Konstantinov KN, Robbins BA, Liu F-T. Galectin-3, a ß-galactoside-binding animal lectin, is a marker of anaplastic large-cell lymphoma. Am J Pathol 1996; 148: 25–30.

    PubMed  CAS  Google Scholar 

  43. Poirier F, Robertson E. Galectin is not necessary for animal life? “knock-out” mouse tells the truth. Development 1993; 119: 1229–1236.

    PubMed  CAS  Google Scholar 

  44. Lasky L. Selectins:interpreters of cell-specific carbohydrates information during inflammation. Science 1992; 258: 964–970.

    Article  PubMed  CAS  Google Scholar 

  45. Bevilacqua M, Nelson R. Selectins. J Clin Invest 1993; 91: 379–387.

    Article  PubMed  CAS  Google Scholar 

  46. Larsen GR, Sako D, Ahern TJ et al. Pselectin and E-selectin:distinct but overlapping leukocyte ligand specificities. J Biol Chem 1992; 267: 11104–11110.

    PubMed  CAS  Google Scholar 

  47. Kawamura N, Imanishi N, Koike H et al. Lipoteichoic acid-induced neutrophil adhesion via E-selectin to human umbilical vein endothelial cells (HUVECs). Biochem Biophys Res Comm 1995; 217: 1208–1215.

    Article  PubMed  CAS  Google Scholar 

  48. Patel K, Nollert M, McEver R. P-Selectin must extend a sufficient length from the plasma membrane to mediate rolling of neutrophils. J Cell Biol 1995; 131: 1893–1902.

    Article  PubMed  CAS  Google Scholar 

  49. Waddell T, Fialkow L, Chan C et al. Signalling functions of L-selectins. J Biol Chem 1995; 270: 15403–15411.

    Article  PubMed  CAS  Google Scholar 

  50. Xu J, Grewal IS, Geba GP et al. Impaired primary T cell responses in L-selectin-deficient mice. J Exp Med 1996; 183: 589–598.

    Article  PubMed  CAS  Google Scholar 

  51. Imai Y, Rosen S. Direct demonstration of heterogeneous sulfated 0-linked carbohydrate chains on an endothelial ligand for Lselectin. Glycoconj J 1993; 10: 34–39.

    Article  PubMed  CAS  Google Scholar 

  52. Lasky LA, Singer MS, Dowbenko D et al. An endothelial ligand for L-selectin is a novel mucin-like molecule. Cell 1992; 69: 927–938.

    Article  PubMed  CAS  Google Scholar 

  53. Dowbenko D, Andalibi A, Young PE et al. Structure and chromosomal localization of the murine gene encoding GLYCAM 1. A mucin-like endothelial ligand for L selectin. J Biol Chem 1993; 268: 4525–4529.

    PubMed  CAS  Google Scholar 

  54. Imai Y, Lasky L, Rosen S. Sulfation requirement for G1yCAM-1, an endothelial ligand for L-selectin. Nature 1993; 361: 555–557.

    Article  PubMed  CAS  Google Scholar 

  55. Hemmerich S, Bertozzi CR, Leffler H et al. Identification of the sulfated monosaccharides of G1yCAM-1, an endothelial derived ligand for L-selectin. Biochemistry 1994; 33: 4820–4829.

    Article  PubMed  CAS  Google Scholar 

  56. Hemmerich S, Rosen SD. 0-sulfated sialyl Lewis x is a major capping group of G1yCAM1. Biochemistry 1994; 33: 4830–4835.

    Article  PubMed  CAS  Google Scholar 

  57. Graves BJ, Crowther RL, Chandran C et al. Insight into E-selectin/ligand interaction from the crystal structure and mutagenesis of the lec/EGF domains. Nature 1994; 367: 532–538.

    Article  PubMed  CAS  Google Scholar 

  58. Alon R, Rossiter H, Wang X et al. Dis tinct cell surface ligands mediate T lymphocyte attachment and rolling on P- and E-selectin under physiological flow. J Cell Biol 1994; 127: 1485–1495.

    Article  PubMed  CAS  Google Scholar 

  59. Bennett TA, Schammel CMG, Lynam EB et al. Evidence for a third component in neutrophil aggregation:potential roles of 0- linked glycoproteins as L-selectin counter structures. J Leukoc Biol 1995; 58: 510–518.

    PubMed  CAS  Google Scholar 

  60. Postigo A. B lymphocyte binding to E and P-selectins is mediated through the de novo expression of carbohydrates on in vitro and in vivo activated human B cells. J Clin Invest 1994; 94: 1585–1596.

    CAS  Google Scholar 

  61. Lowe JB, Stoolman LM, Nair RP et al. ELAM-1-dependent cell adhesion to vascular endothelium determined by a transfected human fucosyltransferase cDNA. Cell 1990; 63: 475–484.

    Article  PubMed  CAS  Google Scholar 

  62. Gersten KM, Natsuka S, Trinchera M et al. Molecular cloning, expression, chromosomal assignment, and tissue-specific expression of a murine a-(1,3)-fucosyltransferase locus corresponding to the human ELAM-1 ligand fucosyl transferase. J Biol Chem 1995; 270: 25047–25056.

    Article  PubMed  CAS  Google Scholar 

  63. Smith PL, Gersten KM, Petryniak B et al. Expression of the a(1,3)fucosyltransferase Fuc-TVII in lymphoid aggregate high endothelial venules correlates with expression of L-selectin ligands. J Biol Chem 1996; 271: 8250–8259.

    Article  PubMed  CAS  Google Scholar 

  64. Pahlsson P, Strindhall J, Srinivas U et al. Role of N-linked glycosylation in expression of E-selectin on human endothelial cells. Eur J Immunol 1995; 25: 2452–2459.

    Article  PubMed  CAS  Google Scholar 

  65. Mannori G, Crottet P, Cecconi O et al. Differential colon cancer cell adhesion to E-, P-, and L-selectin:role of mucin-type glycoproteins. Cancer Res 1995; 55: 4425–4430.

    Google Scholar 

  66. Takada A, Ohmori K, Yoneda T et al. Contribution of carbohydrate antigens sialyl Lewis a and sialyl Lewis x to adhesion of human cancer cells to vascular endothelium. Cancer Res 1993; 53: 354–361.

    PubMed  CAS  Google Scholar 

  67. Saitoh O, Wang W-C, Lotan R et al. Differential glycosylation and cell surface expression of lysosomal membrane glycoproteins in sublines of a human colon cancer exhibiting distinct metastatic potentials. J Biol Chem 1992; 267: 5700–5711.

    PubMed  CAS  Google Scholar 

  68. Sawada R, Tsuboi S, Fukuda M. Differential E-selectin-dependent adhesion efficiency in sublines of a human colon cancer exhibiting distinct metastatic potentials. J Biol Chem 1994; 269: 1425–1431.

    PubMed  CAS  Google Scholar 

  69. Sawada T, Ho JJL, Chung Y-S et al. Eselectin binding by pancreatic tumor cells is inhibited by cancer sera. Int J Cancer 1994; 57: 901–907.

    Article  PubMed  CAS  Google Scholar 

  70. Rao BNN, Anderson MB, Musser JH et al. Sialyl Lewis X mimics derived from a pharmacophore search are selectin inhibitors with anti-inflammatory activity. J Biol Chem 1994; 269: 19663–19666.

    PubMed  CAS  Google Scholar 

  71. Wang D, Birkenmeier T, Yang J et al. Release from quiescence stimulates the expression of integrin a513, which regulates DNA synthesis in human fibrosarcoma HT1080 cells. J Cell Physiol 1995; 164: 499–508.

    Article  PubMed  CAS  Google Scholar 

  72. Hynes R. Integrins:versatility, modulation, and signaling in cell adhesion. Cell 1992; 69: 11–25.

    Article  PubMed  CAS  Google Scholar 

  73. Ayad S, Boot-Handford R, Humphries M et al. The Extracellular Matrix FactsBook. San Diego CA: Academic Press 1994: 10–15.

    Google Scholar 

  74. Fukushima K, Watanabe H, Takeo K et al. N-linked sugar chain structure of recombinant human lymphotoxin produced by CHO cells:the functional role of carbohydrate as to its lectin-like character and clearance velocity. Arch Biochem Biophys 1993; 304: 144–153.

    Article  PubMed  CAS  Google Scholar 

  75. Ruoslahti E, Pierschbacher M. New perspectives in cell adhesion:RGD and integrins. Science 1987; 238: 491–497.

    Article  PubMed  CAS  Google Scholar 

  76. Ruoslahti E, Yamaguchi Y. Proteoglycans as modulators of growth factor activities. Cell 1991; 64: 867–869.

    Article  PubMed  CAS  Google Scholar 

  77. Haas T, Plow E. Ligand-ligand interactions:a year in review. Curr Opin Cell Biol 1994; 6: 656–662.

    Article  PubMed  CAS  Google Scholar 

  78. Wight T, Heinegard D, Hascall V. Proteoglycans:structure and function. In:Hay E ed. Cell Biology of Extracellular Matrix. New York: Plenum Press; 1991: 51–52.

    Google Scholar 

  79. Nilsson B, De Luca S, Lohmander S. Structures of N-linked and 0-linked oliogosaccharides on proteoglycan monomer isolated from the swarm rat chondrosarcoma. J Biol Chem 1982; 257: 10920–10927.

    PubMed  CAS  Google Scholar 

  80. Hounsell E, Feeney J, Scudder Pet al. NMR studies at 500 MHz of a neutral disaccharide and sulfated di-, tetra, hexa, and larger oligosaccharides obtained by endo-13-galactosidase treatment of keratan sulfate. Eur J Biochem 1986; 157: 375–384.

    Article  PubMed  CAS  Google Scholar 

  81. Akiyama F, Stevens RL, Hayashi S et al. The structures of N- and 0-glycosidic carbohydrate chains of a chondroitin sulfate proteoglycan isolated from the media of the human aorta. Arch Biochem Biophys 1987; 252: 574–590.

    Article  PubMed  CAS  Google Scholar 

  82. Stephens L, Sutherland A, Klimanskaya I et al. Deletion of 131 integrins in mice results in inner cell mass failure and peri-implantation lethality. Gene Develop 1995; 9: 1883–1895.

    Article  CAS  Google Scholar 

  83. Fässler R, Meyer M. Consequences of lack of (31 integrin gene expression in mice. Gene Develop 1995; 9: 1896–1908.

    Article  Google Scholar 

  84. Chammas R, Veiga S, Travassos L et al. Functionally distinct roles for glycosylation of a and 3 integrin chains in cell-matrix interactions. Proc Natl Acad Sci USA 1993; 90: 1795–1799.

    Article  PubMed  CAS  Google Scholar 

  85. Koyama T, Hughes RC. Functional integrins from normal and glycosylationdeficient baby hamster kidney cells. J Biol Chem 1992; 267: 25939–25944.

    PubMed  CAS  Google Scholar 

  86. Akiyama S, Yamada S, Yamada K. Analysis of the role of the human fibronectin receptor. J Biol Chem 1989; 264: 18011–18018.

    PubMed  CAS  Google Scholar 

  87. Elbein A, Legler G, Tlusty A et al. The effect of deoxymannojirimycin on the processing of the influenza viral glycoproteins. Arch Biochem Biophys 1984; 235: 579–588.

    Article  PubMed  CAS  Google Scholar 

  88. Zheng M, Fang H, Hakomori S. Functional role of N-glycosylation in a5ß1 integrin receptor. J Biol Chem 1994; 269: 12325–12331.

    PubMed  CAS  Google Scholar 

  89. Wadsworth S, Halvorson M, Chang A et al. Multiple changes in VLA protein glycosylation, expression, and function occur during mouse T cell ontogeny. J Immunol 1993; 150: 847–857.

    PubMed  CAS  Google Scholar 

  90. Lampe B, Stallmach A, Riecken EO. Altered glycosylation of integrin adhesion molecules in colorectal cancer cells and decreased adhesion to the extracellular matrix. Gut 1993; 34: 829–836.

    Article  Google Scholar 

  91. Kawano T, Takasaki S, Tao T et al. Altered glycosylation of ß, integrins associated with reduced adhesiveness to fibronectin and laminin. Int J Cancer 1993; 53: 91–96.

    Article  PubMed  CAS  Google Scholar 

  92. Kojima N, Shiota M, Sadahira Yet al. Cell adhesion in a dynamic flow system as com pared to static system. J Biol Chem 1992; 267: 17264–17270.

    PubMed  CAS  Google Scholar 

  93. Kojima N, Saito M, Tsuji S. Role of cell surface O-linked oligosaccharides in adhesion of HL60 cells to fibronectin:regulation of integrin-dependent cell adhesion by 0- linkedoligosaccharide elongation. Exp Cell Res 1994; 214: 537–542.

    Article  PubMed  CAS  Google Scholar 

  94. Gilbert S. Developmental Biology. 3rd ed. Sunderland MA: Sinauer Associates Inc, 1991: 32–33.

    Google Scholar 

  95. Focarelli R, Rosati F. The 220-kDa vitelline 105. coat glycoprotein mediates sperm binding in the polarized egg Unio elongatulus through 0-linked oligosaccharides. Development Biol 1995; 171: 606–614.

    Article  CAS  Google Scholar 

  96. Shur B. Expression and function of cell surface galactosyltransferase. Biochim Biophys Acta 1989; 988: 389–409.

    Article  PubMed  CAS  Google Scholar 

  97. Dell A, Morris HR, Easton RL et al. Structural analysis of the oligosaccharides derived from glycodelin, a human glycoprotein with potent immunosuppressive and contraceptive activities. J Biol Chem 1995; 270: 24116–24126.

    Article  PubMed  CAS  Google Scholar 

  98. Miller D, Macek B, Shur B. Complementarity between sperm surface f314 galactosyltransferase and egg coat ZP3 mediates sperm-egg binding. Nature 1992; 109. 357: 589–593.

    Article  Google Scholar 

  99. Tulsiani D, Skudlarek M, Araki K et al. Purification and characterization of two forms of ß-D-galactosidase from rat epididymal fluid:evidence for their role in the 110. modification of sperm plasma membrane glycoprotein(s). Biochem J 1995; 305: 41–50.

    PubMed  CAS  Google Scholar 

  100. Hey N, Graham R, Seif, R et al. The polymorphic epithelial mucin MUC1 in human endometrium is regulated with maximal expression in the implantation phase. J Clin Endocrin Metab 1994; 78: 337–342.

    Article  CAS  Google Scholar 

  101. Mori E, Takasaki S, Hedrick J et al. Neutral oligosaccharide structures linked to asparagines of porcine zona pellucida glycoproteins. Biochemistry 1991; 30: 2078–2087.

    Article  PubMed  CAS  Google Scholar 

  102. Noguchi S, Nakano M. Strucure of the acidic N-linked carbohydrate chains of the 55-kDa glycoprotein family (PZP3) from porcine zona pellucida. Eur J Biochem 1992; 209: 883–894.

    Article  PubMed  CAS  Google Scholar 

  103. Hokke C, Damm J, Penninkhof B et al. Structure of the 0-linked carbohydrate chains of porcine zona pellucida glycoproteins. Eur J Biochem 1994; 221: 491–512.

    Article  PubMed  CAS  Google Scholar 

  104. Yurewicz E, Pack B, Sacco A. Porcine oocyte zone pellucida Mr 55,000 glycoproteins:identification of 0-glycosylated domains. Molec Reprod Develop 1992; 33: 182–188.

    Article  CAS  Google Scholar 

  105. Yonezawa N, Aoki H, Hatanaka Y et al. Involvement of N-linked carbohydrate chains of pig zona pellucida in sperm-egg binding. Eur J Biochem 1995; 233: 35–41.

    Article  PubMed  CAS  Google Scholar 

  106. Rosiere T, Wassarman P. Identification of a region of mouse zona pellucida glycoprotein mZP3 that possesses sperm receptor activity. Develop Biol 1992; 154: 309–317.

    Article  PubMed  CAS  Google Scholar 

  107. Bleil JD, Wassarman PM. Galactose at the nonreducing terminus of 0-linked oligosaccharides of mouse egg zona pellucida glycoprotein ZP3 is essential for the glycoprotein’s sperm receptor activity. Proc Natl Acad Sci USA 1988; 85: 6778–6782.

    Article  PubMed  CAS  Google Scholar 

  108. Wassarman P. Zone pellucida glycoproteins. Ann Rev Biochem 1988; 57: 415–442.

    Article  PubMed  CAS  Google Scholar 

  109. Litscher E, Juntunen K, Seppo A et al. Oligosaccharide constructs with defined structures that inhibit binding of mouse sperm to unfertilized eggs in vitro. Biochemistry 1995; 34: 4662–4669.

    Article  PubMed  CAS  Google Scholar 

  110. Thall A, Maly P, Lowell J. Oocyte Galal3Gal epitopes implicated in sperm cell adhesion to the zona pellucida glycoprotein ZP3 are not required for fertilization in the mouse. J Biol Chem 1995; 270: 21437–21440.

    Article  PubMed  CAS  Google Scholar 

  111. Ross P, Vigneault N, Provencher S et al. Partial characterization of galactosyltransferase in human seminal plasma and its distribution in the human epididymis. J Reprod Fertil 1993; 98: 129–137.

    Article  PubMed  CAS  Google Scholar 

  112. Scully N, Shur B. Stage-specific increase in cell surface galactosyltransferase activity during spermatogenesis in mice bearing t alleles. Develop Biol 1988; 125: 195–199.

    Article  PubMed  CAS  Google Scholar 

  113. Lopez L, Bayna E, Litoff D et al. Receptor function of mouse sperm surface galactosyltransferase during fertilization. J Cell Biol 1985; 101: 1501–1510.

    Article  PubMed  CAS  Google Scholar 

  114. Youakim A, Hathaway H, Miller D et al. Overexpressing sperm surface I31–4-galactosyltransferase in transgenic mice affects multiple aspects of sperm-egg interactions. J Cell Biol 1994; 126: 1573–1583.

    Article  PubMed  CAS  Google Scholar 

  115. Lambert H, Le A. Possible involvement of a sialylated component of the sperm plasma membrane in sperm-zona interaction in the mouse. Gamete Res 1984; 10: 153–163.

    Article  CAS  Google Scholar 

  116. Cardullo R, Armant D, Millette C. Increased Fuc-transferase activity between isolated mouse spermatocytes and spermatids. J Cell Biol 1986; 103: 81a.

    Google Scholar 

  117. Durr R, Shur S, Roth S. Sperm associated sialyltransferase activity. Nature 1977; 265: 547–548.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brockhausen, I., Kuhns, W. (1997). Glycoproteins and Cell Adhesion Functions. In: Glycoproteins and Human Disease. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21960-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21960-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21962-1

  • Online ISBN: 978-3-662-21960-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics