Skip to main content

Biosynthesis of N-Glycans

  • Chapter
Glycoproteins and Human Disease

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

Abstract

The initial steps in the biosynthesis of N-glycans have been are preserved throughout evolution and are similar in lower and higher species. In contrast to O-glycans, N-glycans are pre-assembled as a dolicholpyrophosphate-(Dol-P-P-) intermediate and then transferred to protein by the action of oligosaccharyltransferase in the ER. Subsequent processing includes the trimming of Glc and Man residues and the addition of various sugars by Golgi glycosyltransferases (Fig. 3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hirschberg CB, Snider MB. Topography of glycosylation in the rough endoplasmic reticulum and Golgi apparatus. Ann Rev Biochem 1987; 56: 63–87.

    Article  PubMed  CAS  Google Scholar 

  2. Zhu X, Lehrman MA. Cloning, sequence, and expression of a cDNA encoding hamster UDP-G1cNAc:dolichol phosphate N-acetylglucosamine-l-phosphate transferase. J Biol Chem 1990; 265: 14250–14255.

    PubMed  CAS  Google Scholar 

  3. Scocca JR, Krag SS. Sequence of a cDNA that specifies the uridine diphosphate Nacetyl-D-glucosamine:dolichol phosphate Nacetylglucosamine-l-phosphate transferase from chinese hamster ovary cells. J Biol Chem 1990; 265: 20621–20626.

    PubMed  CAS  Google Scholar 

  4. Albright CF, Robbins PW. The sequence and transcript heterogeneity of the yeast gene ALG1 and essential mannosyltransferase involved in N-glycosylation. J Biol Chem 1990; 265: 7041–7049.

    Google Scholar 

  5. Couto JR, Huffaker TC, Robbins PW. Cloning and expression in Escherichia coli of a yeast mannosyltransferase from the asparagine-linked glycosylation pathway. J Biol Chem 1983; 259: 378–382.

    Google Scholar 

  6. Orlean P, Albright C, Robbins PW. Cloning and sequencing of the yeast gene for dolichol phosphate mannose synthase, an essential protein. J Biol Chem 1988; 263: 17499–17507.

    PubMed  CAS  Google Scholar 

  7. Schutzbach JS, Jensen JW, Lai C-S et al. Membrane structure and mannosyltransferase activities:the effects of dolichols on membranes. Chemica Scripta 1987; 27: 109–118.

    CAS  Google Scholar 

  8. Schutzbach JS, Zimmerman JW, Forsee WT. The purification and characterization of recombinant yeast dolichyl-phosphatemannose synthase. J Biol Chem 1993; 268: 24190–24196.

    PubMed  CAS  Google Scholar 

  9. Jensen JW, Schutzbach JS. Activation of dolichyl-phospho-mannose synthase by phospholipids. Eur J Biochem 1985; 153: 41–48.

    Article  PubMed  CAS  Google Scholar 

  10. to Heesen S, Lehle L, Weissmann A et al. Isolation of the ALG5 locus encoding the UDP-Glucose:dolichyl-phosphate glucosyltransferase from Saccharomyces cerevisiae. Eur J Biochem 1994; 224: 71–79.

    Article  Google Scholar 

  11. Kukuruzinska MA, Bergh MLE, Jackson BJ. Protein glycosylation in yeast. Ann Rev Biochem 1987; 56: 915–944.

    Article  PubMed  CAS  Google Scholar 

  12. Herscovics A, Orlean P. Glycoprotein biosynthesis in yeast. FASEB J 1993; 7: 540–550.

    PubMed  CAS  Google Scholar 

  13. Jensen JW, Schutzbach JS. Phospholipaseinduced modulation of dolichyl-phosphomannose synthase activity. Biochemistry 1989; 28: 851–855.

    Article  PubMed  CAS  Google Scholar 

  14. Verbert A. From Glc3Man9GlcNAc2-protein to Man5GlcNAc2-protein:transfer `en bloc’ and processing. In:Glycoproteins. Montreuil J, Vliegenthart JFG, Schachter H eds. New York: Elsevier Pub 1995; 145–152.

    Google Scholar 

  15. te Heesen S, Janetzky B, Lehle L et al. The yeast WBP1 is essential for oligosaccharyltransferase activity in vivo and in vitro. EMBO J 1992; 11: 2071–2075.

    Google Scholar 

  16. Bause E. Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes. Biochem J 1983; 209: 331–336.

    PubMed  CAS  Google Scholar 

  17. Wieland FT, Gleason ML, Serafini TA et al. The rate of bulk flow from the endoplasmic reticulum to the cell surface. Cell 1987; 50: 289–300.

    Article  PubMed  CAS  Google Scholar 

  18. Lennon K, Pretel R, Kesselheim J et al. Proliferation-dependent differential regulation of the dolichol pathway genes in Saccharomyces cerevisiae. Glycobiol 1995; 5: 633–642.

    Article  CAS  Google Scholar 

  19. Bischoff J, Moremen K, Lodish HF. Isolation, characterization, and expression of cDNA encoding a rat liver endoplasmic reticulum alpha-mannosidase. J Biol Chem 1990; 265: 17110–17117.

    PubMed  CAS  Google Scholar 

  20. Lal A, Schutzbach JS, Forsee WT et al. Isolation and expression of murine and rabbit cDNAs encoding an a1,2-mannosidase involved in the processing of asparagine-linked oligosaccharides. J Biol Chem 1994; 269: 9872–9881.

    PubMed  CAS  Google Scholar 

  21. Schutzbach JS, Forsee WT. Calcium ion activation of rabbit liver a1,2-mannosidase. J Biol Chem 1990; 265: 2546–2549.

    PubMed  CAS  Google Scholar 

  22. Schachter H. Biosynthesis 2c: Glycosyltransferases involved in the synthesis of Nglycan antennae. In:Montreuil J, Vliegenthart JFG, Schachter H eds. Glycoproteins. Elsevier pub. 1995: 153–199.

    Google Scholar 

  23. Stanley P, Narasimhan S, Siminovitch L et al. Chinese Hamster Ovary cells selected for resistance to the cytotoxicity of phytohemagglutinin are deficient in a UDP N-acetylglucosaminyl glycoprotein N-acetylglucosaminyltransferase activity. Proc Natl Acad Sci USA 1975; 72: 3323–3327.

    Article  PubMed  CAS  Google Scholar 

  24. Metzler M, Gertz A, Sarkar M et al. Complex asparagine-linked oligosaccharides are required for morphogenic events during post-implantation development. EMBO J 1994; 13: 2056–2065.

    PubMed  CAS  Google Scholar 

  25. loffe E, Stanley P. Mice lacking NAcetylglucosaminyltransferase I activity die at mid-gestation, Revealing an essential role for complex or hybrid N-linked carbohydrates. Proc Natl Acad Sci USA. 1994; 91: 728–732.

    Article  Google Scholar 

  26. Tan J, Dunn J, Jaeken J. Carbohydrate-deficient glycoprotein syndrome type II. An autosomal recessive disease due to point mutations in the coding region of the Nacetylglucosaminyltransferase II gene. Glycoconj J 1995; 12: 478.

    Google Scholar 

  27. Narasimhan S. Control of glycoprotein synthesis VII. UDP-G1cNAc:glycopeptide 134N-acetylglucosaminyltransferase III, an enzyme from hen oviduct which adds G1cNAc in ß1–4 linkage to the 13-linked mannose of the trimannosyl core of N-glycosyl oligosaccharides. J Biol Chem 1982; 257: 1023510242.

    Google Scholar 

  28. Brisson JR, Carver JP. The relation of three-dimensional structure to biosynthesis in the N-linked oligosaccharides. Can J Biochem Cell Biol 1993; 61: 1067–1078.

    Article  Google Scholar 

  29. Nishikawa A, Ihara Y, Hatakeyama M et al. Purification, cDNA cloning, and expression of UDP-N-acetylglucosamine:ß-Dmannoside 13–1,4N-acetylglucosaminyltransferase III from rat kidney. J Biol Chem 1992; 267: 18199–18204.

    PubMed  CAS  Google Scholar 

  30. Ihara Y, Nishikawa A, Tohma T et al. cDNA cloning, expression, and chromosomal localization of human N-acetylglucosaminyltransferase III (GnT-III). J Biochem 1993; 113: 692–698.

    PubMed  CAS  Google Scholar 

  31. Yoshimura M, Nishikawa A, Ihara Y et al. High expression of UDP-N-acetylglucosamine:ß-D-mannoside 13–1,4-N-acetylglucosaminyltransferase III (GnT III) in chronic myelogenous leukemia in blastic crisis. Int J Cancer 1995; 60: 443–449.

    Article  PubMed  CAS  Google Scholar 

  32. Narasimhan S, Schachter H, Rajalakshmi S. Expression of N-acetylglucosaminyltransferase III in hepatic nodules during rat liver carcinogenesis promoted by orotic acid. J Biol Chem 1988; 263: 1273–1281.

    PubMed  CAS  Google Scholar 

  33. Miyoshi E, Nishikawa A, Ihara Y et al. Nacetylglucosaminyltransferase III and V messenger RNA levels in LEC rats during hepatocarcinogenesis. Cancer Res 1993; 53: 3899–3902.

    PubMed  CAS  Google Scholar 

  34. Gleeson PA, Schachter H. Control of glycoprotein synthesis. VIII. UDP-GIcNAc: GnGn (G1cNAc to Manal-3) 134-N-acetylglucosaminyltransferase IV, an enzyme in hen oviduct which adds G1cNAc in 131–4 linkage to the al-3-linked Man residue of the trimannosyl core of N-glycosyl oligosaccharides to form a tri-antennary structure. J Biol Chem 1983; 258: 6162–6173.

    PubMed  CAS  Google Scholar 

  35. Koenderman A, Wijermans P, van den Eijnden D. Changes in the expression of Nacetylglucosaminyltransferase III, IV, V associated with the differentiation of HL60 cells. FEBS Lett 1987; 222: 42–46.

    Article  PubMed  CAS  Google Scholar 

  36. Brockhausen I, Romero P, Herscovics A. Glycosyltransferase changes upon differentiation of CaCo-2 human colonic adenocarcinoma cells. Cancer Res 1991; 51: 31363142.

    Google Scholar 

  37. Yoshimura M, Nishikawa A, Ihara Y. Suppression of lung metastasis of B16 mouse melanoma by N-acetylglucosaminyltransferase III gene transfection. Proc Natl Acad Sci. USA 1995; 92: 8754–8758.

    Article  CAS  Google Scholar 

  38. Demetriou M, Nabi IR, Coppolino M et al. Reduced contact-inhibition and substratum adhesion in epithelial cells expressing GlcNAc-Transferase V. J Cell Biol 1995; 130: 383–392.

    Article  PubMed  CAS  Google Scholar 

  39. Miyoshi E, Nishikawa A, Ihara Y et al. Transforming growth factor 13 up-regulates expression of the N-acetylglucosaminyltransferaseV gene in mouse melanoma cells. J Biol Chem 1995; 270: 6216–6220.

    Article  PubMed  CAS  Google Scholar 

  40. Ju T-Z, Chen H-L, Gu J-X. Regulation of N-acetylglucosaminyltransferase V by protein kinases. Glycoconj J 1995; 12: 767–772.

    Article  PubMed  CAS  Google Scholar 

  41. Shoreibah MG, Hindsgaul O, Pierce M. Purification and characterization of rat kidney UDP-N-acetylglucosamine: a-6-D-mannoside ß-1.6-N-acetylglucosaminyltransferase. J Biol Chem 1992; 267: 2920–2927.

    PubMed  CAS  Google Scholar 

  42. Saito H, Nishikawa A, Gu JG. CDNA cloning and chromosomal mapping of human N-acetylglucosaminyltransferase V. Biochem Biophys Res Commun 1994; 198: 318–327.

    Article  PubMed  CAS  Google Scholar 

  43. Brockhausen I, Hull E, Hindsgaul O et al. Control of glycoprotein synthesis. Detection and characterization of a novel branching enzyme from hen oviduct, UDP-N-acetylglucosamine: G1cNAc 31–6(GIcNAcß 12)Mana-R (G1cNAc to Man) (3–4-Nacetylglucosaminyltransferase VI. J Biol Chem 1989; 264: 11211–11221.

    PubMed  CAS  Google Scholar 

  44. Brockhausen I, Möller G, Yang JM et al. Control of glycoprotein synthesis. Characterization of (1–4)-N-acetyl-beta-Dglucosaminyltransferases acting on the alpha-D-(1–3)-and alpha-D-(1–6)-linked arms of N-linked oligosaccharides. Carbohydr Res 1992; 236: 281–299.

    Article  PubMed  CAS  Google Scholar 

  45. Kornfeld S. Lysosomal enzyme targeting. Biochem Soc Trans 1990; 18: 367–374.

    PubMed  CAS  Google Scholar 

  46. Ketcham CM, Kornfeld S. Characterization of UDP-N-acetylglucosamine:glycoprotein N-acetylglucosamine-l -phosphotransferase from Acanthamoeba castellanii. J Biol Chem 1992; 267: 11654–11659.

    PubMed  CAS  Google Scholar 

  47. Baranski T, Koelsch G, Hartsuck JA et al. Mapping and molecular modelling of a recognition domain for lysosomal enzyme targeting. J Biol Chem 1991; 266: 2336523372.

    Google Scholar 

  48. Jadot M, Canfield WM, Gregory W et al. Characterization of the signal for rapid internalization of the bovine mannose-6-phosphate/insulin-like growth factor-II receptor. J Biol Chem 1992; 267: 11069–11077.

    PubMed  CAS  Google Scholar 

  49. Reitman ML, Varki A, Kornfeld S. Fibroblasts from patients with I-cell disease and pseudo-Hurler polydystrophy are deficient in uridine 5’-diphosphate-N-acetylglucosamine:glycoprotein N-acetylglucosaminylphosphotransferase. J Clin Invest 1981; 67: 1574–1579.

    Article  PubMed  CAS  Google Scholar 

  50. Voynow JA, Kaiser RS, Scanlin TF et al. Purification and characterization of GDPL-fucose-N-acetyl ß-D-glucosaminide al-6 fucosyltransferase from cultured human skin fibroblasts. Requirement of a specific biantennary oligosaccharide as substrate. J Biol Chem 1991; 266: 21572–21577.

    PubMed  CAS  Google Scholar 

  51. Staudacher E, Altmann F, Glössl J. GDPfucose:beta-N-acetylglucosamine (Fuc to (Fucalphal-6G1cNAc)-Asn-peptide) alphal-3-fucosyltransferase activity in honeybee (Apis mellifica) venom glands-The difucosylation of asparagine-bound Nacetylglucosamine. Eur J Biochem 1991; 199: 745–751.

    Article  PubMed  CAS  Google Scholar 

  52. Weinstein J, DeSouza-e-Silva U, Paulson JC. Purification of a Ga1131–4G1cNAc a2–6sialyltransferase and a Gal13l-3(4)GIcNAc a2–3-sialyltransferase to homogeneity from rat liver. J Biol Chem 1982; 257: 1383513844.

    Google Scholar 

  53. Wen DX, Livingston BD, Medzihradszky KF et al. Primary structure of Galßl, 3(4)G1cNAc a,3-sialyltransferase determined by mass spectrometry sequence analysis and molecular cloning. Evidence for a protein motif in the sialyltransferase gene family. J Biol Chem 1992; 267: 21011–21019.

    PubMed  CAS  Google Scholar 

  54. Lee EU, Roth J, Paulson JC. Alteration of terminal glycosylation sequences on N-linked oligosaccharides of chinese hamster ovary cells by expression of ß-galactoside a2,6-sialyltransferase. J Biol Chem 1989; 264: 13848–13855.

    PubMed  CAS  Google Scholar 

  55. Weinstein J, Lee EU, McEntee K et al. Primary structure of ß-galactoside a2,6sialyltransferase. Conversion of membrane-bound enzyme to soluble forms by cleavage of the NH2-terminal signal anchor. J Biol Chem 1987; 262: 17735–17743.

    PubMed  CAS  Google Scholar 

  56. Kitagawa H, Pàulson JC. Cloning and expression of human Galbetal,3(4)G1cNAc alpha2,3-sialyltransferase. Biochem Biophys Res Commun 1993; 194: 375–382.

    Article  PubMed  CAS  Google Scholar 

  57. Kitagawa H, Paulson JC. Cloning of a novel a2–3-sialyltransferase that sialylates glycoprotein and glycolipid carbohydrate groups. J Biol Chem 1994; 269: 1394–1401.

    PubMed  CAS  Google Scholar 

  58. Nemansky M, Van den Eijnden DH:Enzymatic characterization of CMPNeuAc:Galbetal -4G1cNAc-R alpha(2–3)sialyltransferase from human placenta. Glycoconj J 1993; 10: 99–108.

    Article  PubMed  CAS  Google Scholar 

  59. Dall’Olio F, Malagolini N, Di Stefano G et al. Increased CMP-NeuAc:Gal131–4G1cNAcR a2–6 sialyltransferase activity in human colorectal cancer tissues. Int J Cancer 1989; 44: 434–439.

    Article  PubMed  Google Scholar 

  60. Marer N, Stéhelin D. High alpha-2,6sialylation of N-acetyllactosamine sequences in ras-transformed rat fibroblasts correlates with high invasive potential. Glycobiology 1995; 5: 219–226.

    Article  PubMed  Google Scholar 

  61. Aasheim HC, Aas-Eng DA, Deggerdal A. Cell-specific expression of human beta-galactoside alpha2,6-sialyltransferase transcripts differing in the 5’ untranslated region. Eut J Biochem 1993; 213: 467–475.

    Article  CAS  Google Scholar 

  62. Wang X-C, O’Hanlon TP, Young RF et al. Rat ß-galactoside a2,6-sialyltransferase genomic organization:alternate promoters direct the synthesis of liver and kidney transcripts. Glycobiology 1990; 1: 25–31.

    Article  PubMed  CAS  Google Scholar 

  63. Harduin-Lepers A, Recchi MA, Delannoy P. 1994, The year of sialyltransferases. Glycobiology 1995; 5: 741–758.

    Google Scholar 

  64. Nakayama J, Fukuda MN, Fredette B et al. Expression cloning of a human polysialyltransferase that forms the polysialylated neural cell adhesion molecule present in embryonic brain. Proc Natl Acad Sci USA 1995; 92: 7031–7035.

    Article  PubMed  CAS  Google Scholar 

  65. de Heij HT, Koppen PL, van den Eijnden DH. Biosynthesis of sialylated 13-D-galactopyranosyl-(1–3)-2-deoxy-ß-D-gluco-pyranosyl oligosaccharide chain. Identification of a f3-D-galactoside ST(3)N-1 a-(2–3)-and a 2-acetamido-2-deoxy-(3-D-glucoside a(2–6)-sialyltransferase in regenerating rat liver and other tissues. Carbohydr Res 1986; 149: 85–99.

    Article  PubMed  Google Scholar 

  66. Hooper LV, Hindsgaul O, Baenziger JU. Purification and characterization of the GaINAc-4-sulfotransferase responsible for sulfation of Ga1NAcß1,4G1cNAc-bearing oligosaccharides. J Biol Chem 1995; 270: 16327–16332.

    Article  PubMed  CAS  Google Scholar 

  67. Skelton T, Hooper L, Srivastava V et al. Characterization of a sulfotransferase responsible for the 4–0-sulfation of terminal (3-NAcetyl-D-galactosamine on asparagine-linked oligosaccharides of glycoprotein hormones. J Biol Chem 1991; 266: 17142–17150.

    PubMed  CAS  Google Scholar 

  68. Habuchi O, Miyata K. Stimulation of glycosaminoglycan sulfotransferase from chick embryo cartilage by basic proteins and polyamines. Biochim Biophys Acta 1980; 616: 208–217.

    Article  PubMed  CAS  Google Scholar 

  69. Habuchi O, Miyashita N. Separation and characterization of chondroitin-6-sulfotransferase and chondroitin-4-sulfotransferase from chick embryo cartilage. Biochim Biophys Acta 1982; 717: 414–421.

    Article  PubMed  CAS  Google Scholar 

  70. Hooper LV, Beraneck MC, Manzella SM et al. Differential expression of Ga1NAc-4-sulfotransferase and Ga1NActransferase results in distinct glycoforms of carbonic anhydrase VI in parotid and submaxillary glands. J Biol Chem 1995; 270: 5985–5993.

    Article  PubMed  CAS  Google Scholar 

  71. Merkle R, Elbein A, Heifetz A. The effect of swainsonine and castanospermine on the sulfation of the oligosaccharide chains of N-linked glycoproteins. J Biol Chem 1985; 260: 1083–1089.

    PubMed  CAS  Google Scholar 

  72. Humphries D, Silbert C, Silbert J. Glycosaminoglycan production by bovine aortic endothelial cells cultured in sulfate depleted medium. J Biol Chem 1986; 261: 9122–9127.

    PubMed  CAS  Google Scholar 

  73. van der Kraan P, de Vries B, Vitters E et al. The effect of low sulfate concentrations on the glycosaminoglycan synthesis in anatomically intact articular cartilage of the mouse. J Orthoped Res 1989; 7: 645–653.

    Article  Google Scholar 

  74. Baeuerle P, Huttner W. Chlorate-a potent inhibitor of sulfation in intact cells. Biochem Biophys Res Comm 1986; 141: 870–877.

    Article  PubMed  CAS  Google Scholar 

  75. Dekker J, Van Beurden-Lamers W, Strous G. Biosynthesis of gastric mucus glycoprotein of the rat. J Biol Chem 1989; 264: 10431–10437.

    PubMed  CAS  Google Scholar 

  76. Mintz K, Fisher L, Grzesik W et al. Chlorate-induced inhibition of tyrosine sulfation on bone sialoprotein synthesized by a rat osteoblast-like cell line (IJMR 106–01 BSP). J Biol Chem 1994; 269: 4845–4852.

    PubMed  CAS  Google Scholar 

  77. Forstner J, Roomi N, Khorasani R et al. Effect of reserpine on the histochemical and biochemical properties of rat intestinal mucin. Exp Mol Path 1991; 54: 129–143.

    Article  CAS  Google Scholar 

  78. Mawhinney T. Effects of reserpine pretreatment on secretion of sulfated and sialylated glycoproteins by the rat trachea in vivo and in vitro. In:Martinez J, Barbero G, eds, Animal Models for Cystic Fibrosis:The Reserpine Treated Rat. San Francisco: San Francisco Press, Inc, 1985: 1235–1237.

    Google Scholar 

  79. Roberton A, McKenzie C, Sharfe N et al. A glycosulfatase that removes sulfate from mucus glycoprotein. Biochem J 1993; 293: 683–689.

    PubMed  CAS  Google Scholar 

  80. Corfield A, Wagner S, Clamp J. Detection of a carbohydrate sulfatase in human fecal extracts. Biochem Soc Trans 1987; 15: 1089.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brockhausen, I., Kuhns, W. (1997). Biosynthesis of N-Glycans. In: Glycoproteins and Human Disease. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21960-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21960-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21962-1

  • Online ISBN: 978-3-662-21960-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics