Skip to main content

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

  • 104 Accesses

Abstract

Microorganisms may have cell surface carbohydrate binding proteins that participate in host interactions. These may involve microbial binding, colonization and infectivity, utilization of host glycoproteins as an energy source and interactions with the immune system. Microbial carbohydrates may be highly immunogenic for the host immune defense system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tikkanen K, Haataja S, François-Gerard C et al. Purification of a galactosyl-1–4-galactosebinding adhesin from the gram positive meningitis-associated bacterium streptococcus suis. J Biol Chem 1995; 270: 28874–28878.

    Article  PubMed  CAS  Google Scholar 

  2. Lingwood C. Glycolipids as receptors. Adv Lipid Res 1991; 1: 39–55.

    Google Scholar 

  3. Karlsson K, Angstrom J, Bergstruom J et al. Microbial interaction with animal cell surface carbohydrates. APMIS 1992; 100 Suppl 27: 71–83.

    Google Scholar 

  4. Hoskins L. Degradation of mucus glycoproteins in the gastrointestinal tract. In: Horowitz M, Pigman W eds. The Glycoconjugates Vol 2. New York: Academic Press, 1978; 235–253.

    Chapter  Google Scholar 

  5. Springer G. Blood group activity in certain bacteria and plants. In:Kuhns W, ed. Blood Groups and Blood Transfusion. New York: Better Bellevue Association, 1967; 137–168.

    Google Scholar 

  6. Liukkonen J, Haataja S, Tikaanan K et al. Identification of N-acetylneuraminyl a2–3 poly-N-acetyllactosamine glycans as the receptors of sialic acid binding Streptococcus suis strains. J Biol Chem 1992; 267: 21105–21111.

    PubMed  CAS  Google Scholar 

  7. Haataja S, Tikkanen K, Liukkonen J et al. Characterization of a novel bacterial adhesion specificity of Streptococcus suis recognizing blood group P receptor oligosaccharides. J Biol Chem 1993; 268: 4311–4317.

    PubMed  CAS  Google Scholar 

  8. Kuehn M, Heuser J, Normark S et al. P pili in uropathogenic E. coli are composite fibers with distinct fibrillar adhesive tips. Nature 1992; 356: 252–255.

    CAS  Google Scholar 

  9. Sheth H, Lee K, Wong W et al. The pili of Pseudomonas aeruginosa strains PAK and PAO bind specifically to the carbohydrate sequence fiGalNAc(1–4)Gal found in glycosphingolipids asialo-GM, and asialoGM2. Molec Microbiol 1994; 11: 715–723.

    Article  CAS  Google Scholar 

  10. Deal C, Krivan H. Lacto-and ganglio-series glycolipids are adhesion receptors for Neisseria gonorrhoeae. J Biol Chem 1990; 265: 12774–12777.

    PubMed  CAS  Google Scholar 

  11. Lingwood C. Bacterial adhesins/glycolipid receptors. Curr Opin Struct Biol 1992; 2: 693–700.

    Article  CAS  Google Scholar 

  12. Tyrrell G, Ramotar K, Toye B et al. Alteration of the carbohydrate binding specificity of verotoxins from Galal-4Gal to GalNAcß1–3Gala1–4Gal and vice versa by site-directed mutagenesis of the binding subunit. Proc Natl Acad Sci USA 1992; 89: 524–528.

    Article  PubMed  CAS  Google Scholar 

  13. Mobassaleh M, Koul O, Mishra K et al. Developmentally regulated Gb3 galactosyltransferase and a-galactosidase determine Shiga toxin receptors in intestine. Am J Physiol 1994; 267: G618 - G624.

    PubMed  CAS  Google Scholar 

  14. Kiarash A, Boyd B, Lingwood C. Glycosphingolipid receptor function is modified by fatty acid content. J Biol Chem 1994; 269: 11138–11146.

    PubMed  CAS  Google Scholar 

  15. Garber N, Guempel U, Belz A et al. On the specificity of the D-galactose-binding lectin (PA-1) of Pseudomonas aeruginosa and its strong binding to hydrophobic derivatives of D-galactose and thiogalactose. Biochem Biophys Acta 1992; 1116: 331–333.

    Article  PubMed  CAS  Google Scholar 

  16. Gilboa-Garber N. Pseudomonas aeruginosa lectins. Meth Enzym 1982; 83: 378–385.

    Article  PubMed  CAS  Google Scholar 

  17. Sauter S, Rutherfurd S, Wagener C et al. Identification of the specific oligosaccharide sites recognized by type 1 fimbriae from on non-specific cross-reacting antigen, a CD66 cluster granulocyte protein. J Biol Chem 1993; 268: 15510–15516.

    PubMed  CAS  Google Scholar 

  18. Ponniah S, Abraham S, Endres R. T-cellindependent stimulation of immunoglobulin secretion in resting human B lymphocytes by the mannose-specific adhesin of E. coli type 1 fimbriae. Infec and Immun 1992; 60: 5197–5203.

    CAS  Google Scholar 

  19. Estabrook M, Christopher N, Griffiss J et al. Sialylation and neutrophil killing of group C Neisseria meningitidis. J Inf Dis 1992; 166: 1079–1088.

    Article  CAS  Google Scholar 

  20. Cho J-W, Troy FA. Polysialic acid engineering: synthesis of polysialylated neoglycosphingolipids by using the polysialyltransferase from neuroinvasive Escherichia coli Kl. Proc Natl Acad Sci USA 1994; 91: 11427–11431.

    Article  PubMed  CAS  Google Scholar 

  21. Schweinle J, Nishiyasu M, Qiang Ding T et al. Truncated forms of mannose-binding protein multimerize and bind to mannoserich Salmonella montevideo but fail to activate complement in vitro. J Biol Chem 1993; 268: 364–370.

    PubMed  CAS  Google Scholar 

  22. Spear P. Glycoproteins specified by herpes simplex virus. In:Roizman B. The Herpes Viruses vol 3. New York: Plenum Press, 1985: 315–336.

    Google Scholar 

  23. Radding W, Pan ZQ, Hunter E et al. Expression of HIV-1 envelope glycoprotein alters cellular calmodulin. Biochem Biophys Res Comm 1996; 218: 192–197.

    Article  PubMed  CAS  Google Scholar 

  24. Freed EO, Martin MA. The role of human immunodeficiency virus type 1 envelope glycoproteins in virus infection. J Biol Chem 1995; 270: 23883–23886.

    Article  PubMed  CAS  Google Scholar 

  25. Bour S, Schubert U, Peden K et al. The envelope glycoprotein of human immunodeficiency virus type 2 enhances viral particle release:a Vpu-like factor? J Virol 1996; 70: 820–829.

    PubMed  CAS  Google Scholar 

  26. Müthing J, Unland F, Heitman D et al. Different binding capacities of influenza and Sendai viruses to gangliosides from human granulocytes. Glycoconj J 1993; 10: 120–126.

    Article  PubMed  Google Scholar 

  27. Johnson D, Frame M, Ligas M et al. Herpes simplex virus immunoglobulin G Fc receptor activity depends on a complex of two viral glycoproteins gE and gI. J Virol 1988; 62: 1347–1354.

    PubMed  CAS  Google Scholar 

  28. Fries L, Friedman H, Cohen G et al. Glycoprotein C of herpes simplex virus 1 is an inhibitor of the complement cascade. J Immunol 1986; 137: 1636–1641.

    PubMed  CAS  Google Scholar 

  29. Olofsson S. Carbohydrates in herpesviruses infection. APMIS 1992; 100 Supp 27: 84–95.

    Google Scholar 

  30. Glick G, Toogood P, Wiley D et al. Ligand recognition by influenza virus; the binding of bivalent sialosides. J Biol Chem 1991; 266: 23660–23669.

    PubMed  CAS  Google Scholar 

  31. Markwell M, Paulson J. Sendai virus utilizes specific sialyloligosaccharides as host cell receptor determinants. Biochemistry 1980; 77: 5693–5697.

    CAS  Google Scholar 

  32. Herrler G, Rott R, Klenk H-D et al. The receptor-destroying enzyme of influenza C virus is neuraminate-O-acetylesterase. EMBO J 1985; 4: 1503–1506.

    CAS  Google Scholar 

  33. Herrler G, Gross HJ, Imhoff A et al. A synthetic sialic acid analogue is recognized by influenza C virus as a receptor determinant but is resistant to the receptor-destroying enzyme. J Biol Chem 1992; 267: 12501–12506.

    PubMed  CAS  Google Scholar 

  34. Li S, Schulman J, Itamura S et al. Glycosylation of neuraminidase determines the neurovirulence of influenza A/WSN/33 virus. J Virol 1993; 67: 6667–6673.

    PubMed  CAS  Google Scholar 

  35. Corfield A, Wagner S, O’Donnell L et al. The roles of enteric bacterial sialidase, sialate 0-acetyl esterase and glycosulfatase in the degradation of human colonic mucin. Glycoconj J 1993; 10: 7–15.

    Article  Google Scholar 

  36. Miyoshi E, Ihara Y, Hayashi N et al. Transfection of N-acetylglucosaminyltransferase III gene suppresses expression of hepatitis B virus in a human hepatoma cell line, HB611. J Biol Chem 1995; 270: 28311–28315.

    Article  PubMed  CAS  Google Scholar 

  37. Barré-Sinoussi F, Chermann J-C, Rey F et al. Isolation of a T-lymphotropic retrovirus from a patient at high risk for acquired immune deficiency syndrome (AIDS). Science 1983; 220: 868–871.

    Article  PubMed  Google Scholar 

  38. Dalgleish A, Beverley P, Clapham P et al. The CD4 (T4) antigen is an essential component of the receptor for the AIDS virus. Nature 1984; 312: 763–767.

    Article  PubMed  CAS  Google Scholar 

  39. Chao B, Costopoulos D, Curiel T et al. A 113-amino acid fragment of CD4 produced in Escherichia coli blocks human immunodeficiency virus-induced cell fusion. J Biol Chem 1989; 264: 5812–5817.

    PubMed  CAS  Google Scholar 

  40. Willey R, Bonifacino J, Potts B et al. Biosynthesis, cleavage and degradation of the human immunodeficiency virus 1 envelope glycoprotein gp160. Proc Natl Acad Sci USA 1988; 85: 9580–9584.

    Article  PubMed  CAS  Google Scholar 

  41. Capobianchi MR, Ankel H, Ameglio F et al. Recombinant glycoprotein 120 of human immuno-deficiency virus is a potent interferon inducer. AIDS Res Hum Retro-viruses 1992; 8: 575–579.

    Article  CAS  Google Scholar 

  42. Leonard C, Spellman M, Riddle L et al. Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese Hamster Ovary cells. J Biol Chem 1990; 265: 10373–10382.

    PubMed  CAS  Google Scholar 

  43. Hansen J, Nielson C, Arendrup M et al. Broadly neutralizing antibodies targeted to mucin-type carbohydrate epitopes of human immunodeficiency virus. J Virol 1991; 65: 6461–6467.

    PubMed  CAS  Google Scholar 

  44. Hansen J. Carbohydrates of Human immunodeficiency virus. APMIS 1992; 100 Suppl 27: 96–108.

    Google Scholar 

  45. Hansen J, Clausen H, Hu S et al. An O-linked carbohydrate neutralization epitope of HIV-1 gp120 is expressed by HIV-1 env gene recombinant vaccinia virus. Arch Virol 1992; 126: 11–20.

    Article  PubMed  CAS  Google Scholar 

  46. Hansen J-ES, Nielsen CM, Nielsen C et al. Correlation between carbohydrate structures on the envelope glycoprotein gp 120 of HIV-1 and HIV-2 and syncytium inhibition with lectins. AIDS 1989; 3: 635–641.

    Article  PubMed  CAS  Google Scholar 

  47. Bernstein H, Tucker S, Hunter E et al. Human immunodeficiency virus type 1 envelope glycoprotein is modified by O-linked oligosaccharides. J Virol 1994; 68: 463–468.

    PubMed  CAS  Google Scholar 

  48. Hansen J, Clausen H, Nielsen C et al. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies:peripheral glycosylation of HIV envelope glycoprotein gp120 may be a target for virus neutralization. J Virol 1990; 64: 2833–2840.

    PubMed  CAS  Google Scholar 

  49. Lifson J, Coutré S, Huang E et al. Role of envelope glycoprotein carbohydrate in human immunodeficiency virus (HIV) infectivity and virus-induced cell fusion. J Exp Med 1986; 164: 2101–2106.

    Article  PubMed  CAS  Google Scholar 

  50. Giordanengo V, Limouse M, Du Roure LD et al. Autoantibodies directed against CD43 molecules with an altered glycosylation status on Human Immunodeficiency Virus Type I (HIV-1)-infected CEM cells are found in all HIV-1+ individuals. Blood 1995; 86: 2301–2311.

    Google Scholar 

  51. Narasimhan S, Lee J, Cheung R et al. ß1,4-mannosyl glycoprotein 13–1,4-N-acetylglucosaminyl transferase III in human B and T lymphocyte lines and in tonsillar B and T lymphocytes. Biochem Cell Biol 1988; 66: 889–900.

    Article  PubMed  CAS  Google Scholar 

  52. Geyer H, Holschback C, Hunsmann G et al. Carbohydrates of human immunodeficiency virus:structures linked to the envelope glycoprotein 120. J Biol Chem 1988; 263: 11760–11767.

    PubMed  CAS  Google Scholar 

  53. Mizuochi T, Spellman M, Larkin M et al. Carbohydrate structures of the human immunodeficiency virus (HIV) recombinant envelope glycoprotein gp120 produced in Chinese Hamster Ovary cells. Biochem J 1988; 254: 599–603.

    PubMed  CAS  Google Scholar 

  54. Mizuochi T, Matthews T, Kato M et al. Diversity of oligosaccharide structures on the envelope glycoprotein gp120 of human immunodeficiency virus from the lymphoblastoid cell line H9. J Biol Chem 1990; 265: 8519–8524.

    PubMed  CAS  Google Scholar 

  55. Doe B, Steimer K, Walker C. Induction of HIV-1 envelope (gp120)-specific cytotoxic T lymphocyte responses in mice by recombinant CHO cell-derived gp120 is enhanced by enzymatic removal of N-linked glycans. Eur J Immunol 1994; 24: 2369–2376.

    Article  PubMed  CAS  Google Scholar 

  56. Shilatifard A, Merkle R, Helland D et al. Complex-type N-linked oligosaccharides of gp120 from human immunodeficiency virus type 1 contain sulfated N-acetyl glucosamine. J Virol 1993; 67: 943–952.

    PubMed  CAS  Google Scholar 

  57. Adachi M, Hayami M, Kashiwagi N et al. Expression of Le antigen in human immunodeficiency virus-infected human T-cell lines and in peripheral lymphocytes of patients with acquired immune deficiency syndrome (AIDS) and AIDS-related complex (ARC). J Exp Med 1988; 167: 323–331.

    Article  PubMed  CAS  Google Scholar 

  58. Liedtke S, Adamski M, Geyer R et al. Oligosaccharide profiles of HIV-2 external envelope protein:dependence on host cells and virus isolates. Glycobiology 1994; 4: 477–484.

    Article  PubMed  CAS  Google Scholar 

  59. Lefebvre J, Giordanengo V, Limouse M et al. Altered glycosylation of leukosialin, CD43, in HIV-1 infected cells of the CEM line. J Exp Med 1994; 180: 1609–1617.

    Article  PubMed  CAS  Google Scholar 

  60. Fenouillet E, Gluckman J, Bahraoui E. Role of N-linked glycans of envelope glycoproteins in infectivity of human immunodeficiency virus type 1. J Virol 1990; 64: 2841–2848.

    PubMed  CAS  Google Scholar 

  61. Bahraoui E, Benjouad A, Guetard D et al. Study of the interaction of HIV-1 and HIV-2 envelope glycoproteins with the CD4 receptor and role of N-glycans. AIDS Res Hum Retrovir 1992; 8: 565–573.

    Article  PubMed  CAS  Google Scholar 

  62. König R, Ashwell G, Hanover J. Glycosylation of CD4:tunicamycin inhibits surface expression. J Biol Chem 1988; 263: 9502–9507.

    PubMed  Google Scholar 

  63. Fennie C, Lasky L. Model for intracellular folding of the human immunodeficiency virus type 1 gp120. J Virol 1989; 63: 636–646.

    Google Scholar 

  64. Benjouad A, Gluckman J-C, Rochat H et al. Influence of carbohydrate moieties on the immunogenicity of human immunodeficiency virus type 1 recombinant gp 160. J Virol 1992; 66: 2473–2483.

    PubMed  CAS  Google Scholar 

  65. Gram GJ, Hemming A, Bolmstedt A et al. Identification of an N-linked glycan in the V1-loop of HIV-1 gp120 influencing neutralization by anti-V3 antibodies and soluble CD4. Arch Virol 1994; 139: 253–261.

    Article  PubMed  CAS  Google Scholar 

  66. Lee W, Syu W, Du B et al. Nonrandom distribution of gp120 N-linked glycosylation sites important for infectivity of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 1992; 89: 2213–2217.

    Article  PubMed  CAS  Google Scholar 

  67. Willey R, Smith D, Lasky L et al. In vitro mutagenesis identifies a region within the envelope gene of the human immunodeficiency virus that is critical for infectivity. J Virol 1988; 62: 139–147.

    PubMed  CAS  Google Scholar 

  68. Dash B, McIntosh A, Barrett W et al. Deletion of a single N-linked glycosylation site from the transmembrane envelope protein of human immunodeficiency virus type 1 stops cleavage and transport of gp 160 preventing env-mediated fusion. J Gen Virol 1994; 75: 1389–1397.

    Article  PubMed  CAS  Google Scholar 

  69. Li Y, Luo L, Rasool N et al. Glycosylation is necessary for the correct folding of human immunodeficiency virus gp 120 in CD4 binding. J Virol 1993; 67: 584–588.

    PubMed  CAS  Google Scholar 

  70. Dedera D, Vander Heyden N, Ratner L. Attenuation of HIV-1 infectivity by an inhibitor of oligosaccharide processing. AIDS Res Hum Retrovir 1990; 6: 785–793.

    Article  PubMed  CAS  Google Scholar 

  71. Shimizu H, Tsuchie H, Yoshida K et al. Inhibitory effect of novel 1-deoxynojirimycin derivatives on HIV-1 replication. AIDS 1990; 4: 975–979.

    CAS  Google Scholar 

  72. Pal R, Hoke G, Sarngadharan M. Role of oligosaccharides in the processing and maturation of envelope glycoproteins of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 1989; 86: 3384–3388.

    Article  PubMed  CAS  Google Scholar 

  73. Pal R, Mumbauer S, Hoke G et al. Brefeldin A inhibits the processing and secretion of envelope glycoproteins of human immunodeficiency virus type 1. AIDS Res Hum Retrovir 1991; 7: 707–712.

    Article  PubMed  CAS  Google Scholar 

  74. Montefiori D, Robinson W, Mitchell W. Role of protein N-glycosylation in pathogenesis of human immunodeficiency virus 1. Proc Natl Acad Sci USA 1988; 85: 92489252.

    Google Scholar 

  75. Dewar R,Vasudevachari M, Natarajan V. Biosynthesis and processing of human immunodeficiency virus type 1 envelope glycoproteins:effects of monensin on glycosylation and transport. J Virol 1989; 63: 2452–2456.

    Google Scholar 

  76. Karlsson G, Butters T, Dwek R et al. Effects of the imino sugar N-butyldeoxynojirimycin on the N-glycosylation of recombinant gp120. J Biol Chem 1993; 268: 570–576.

    PubMed  CAS  Google Scholar 

  77. Favero J. Lectins in AIDS research. Glycobiology 1994; 4: 387–396.

    Article  PubMed  CAS  Google Scholar 

  78. Balzarini J, Schols D, Neyts J et al. a-(13)- and a-(1–6)-D-mannose-specific plant lectins are markedly inhibitory to human immunodeficiency virus and cytomegalovirus infections in vitro. Antimicrob Agents Chemother 1991; 35: 410–416.

    Article  PubMed  CAS  Google Scholar 

  79. Robinson Jr. E, Montefiori D, Mitchell W. Evidence that Mannosyl Residues are involved in Human Immunodeficiency Virus Type I (HIV-1) pathogenesis. AIDS Res Hum Retro 1987; 3: 265–281.

    Article  CAS  Google Scholar 

  80. Mitsuya H, Looney D, Kuno S et al. Dextran sulfate suppression of viruses in the HIV family:inhibition of virion binding to CD4+ cells. Science 1988; 240: 646–649.

    Article  PubMed  CAS  Google Scholar 

  81. Uryu T, Ikushima N, Katsuraya K et al. Sulfated alkyl oligosaccharides with potent inhibitory effects on human immunodeficiency virus infection. Biochem Pharmacol 1992; 43: 2385–2392.

    Article  PubMed  CAS  Google Scholar 

  82. Mbemba E, Gluckman J, Gattegno L. Interactions of HIV-1 and HIV-2 envelope glycoproteins with sulfated polysaccharides and mannose-6-phosphate. Glycobiology 1994; 4: 13–21.

    Article  PubMed  CAS  Google Scholar 

  83. Bhat S, Mettus RV, Reddy EP et al. The galactosyl ceramide/sulfatide receptor binding region of HIV-1 gp120 maps to amino acids 206–275. AIDS Res Hum Retrovir 1993; 9: 175–181.

    Article  PubMed  CAS  Google Scholar 

  84. Fantini J, Cook D, Nathanson R et al. Infection of colonic epithelial cell lines by type 1 human immunodeficiency virus is associated with cell surface expression of galactosylceramide, a potential alternative gp120 receptor. Proc Natl Acad Sci USA 1993; 90: 2700–2704.

    Article  PubMed  CAS  Google Scholar 

  85. Yahi N, Baghdiguian S, Moreau H et al. Galactosyl ceramide (or a closely related molecule) is the receptor for human immunodeficiency virus type 1 on human colon epithelial HT29 cells. J Virol 1992; 66: 4848–4854.

    PubMed  CAS  Google Scholar 

  86. Zamze S. Glycosylation in parasitic protozoa of the Trypanosomatidae family. Glycoconj J 1991; 8: 443–447.

    Article  PubMed  CAS  Google Scholar 

  87. Seranno AA, Schenkman S, Yoshida N et al. The lipid structure of the glycosylphosphatidylinositol-anchored mutin-like sialic acid acceptors of trypanosoma cruzi changes during parasite differentiation from epimastigotes to infective metacyclic trypomastigote forms. J Biol Chem 1995; 270: 27244–27253.

    Article  Google Scholar 

  88. Gerold P, Schuppert-Dieckmann A, Schwarz RT. Glycosyl-phosphatidyl-inositols synthesized by asexual erythrocytic stages of the malaria parasite Plasmodium falciparum. Candidates for plasmodial glycosyl-phosphatidylinositol membrane anchor precursors and pathogenic factors. J Biol Chem 1994; 269: 2597–2606.

    PubMed  CAS  Google Scholar 

  89. Cummings RD, Nyame AK. Glycobiology of schistosomiasis. FASEB J 1996; 10: 838848.

    Google Scholar 

  90. Hoessli DC, Davidson EA, Schwarz RT et al. Glycobiology of plasmodium falciparum:an emerging area of research. Glycoconj J 1996; 13: 1–3.

    Article  PubMed  CAS  Google Scholar 

  91. Dieckmann-Schuppert A, Bause E, Schwarz RT. Studies on 0-glycans of Plasmodiumfalciparum-infected human erythrocytes. Evidence for O-G1cNAc and O-G1cNActransferase in malaria parasites. Eur J Biochem 1993; 210: 779–788.

    Article  Google Scholar 

  92. Avila J, Rojas M, Towbin H. Serological activity against Galactosyl-a(1–3) Galactose in sera from patients with several Kinetoplastida infections. J Clin Microbiol 1988; 26: 126–132.

    PubMed  CAS  Google Scholar 

  93. Menozzi F, Mutombo R, Renauld G et al. Heparin-inhibitable lectin activity of the filamentous hemagglutinin adhesin of Bordetella pertussis. Infec Immun 1994; 62: 769–778.

    CAS  Google Scholar 

  94. Pancake S, Holt G, Mellouk S et al. Malaria sporozoites and circumsporozoite proteins bind specifically to sulfated glycoconjugates. J Cell Biol 1992; 117: 1351–1357.

    Article  PubMed  CAS  Google Scholar 

  95. Vermelho AB, Meirelles MN. Sialoglycoconjugates in Trypanosoma cruzi-host cell interaction:possible biological models-a review. Memorias do Instituto Oswaldo Cruz. 1994; 89: 69–79.

    Article  PubMed  CAS  Google Scholar 

  96. Takahashi N, Lee KB, Nakagawa H et al. Enzymatic sialylation of N-linked oligosaccharides using an a-(2,3)-specific transsialidase from trypanosoma cruzi:structural identification using a three-dimensional elution mapping technique. Anal Biochem 1995; 230: 333–342.

    Article  PubMed  CAS  Google Scholar 

  97. Schenkman S, Ferguson M, Heise N et al. Mucin-like proteins linked to the membrane by glycosylphosphatidylinositol anchor are the major acceptors of sialic acid in a reaction catalyzed by trans-sialidase in meta-cyclic forms of Trypanosoma cruzi. Molec Biochem Pharmacol 1993; 59: 293–304.

    CAS  Google Scholar 

  98. Schenkman S, Eichinger D, Pereira M et al. Structural and functional properties of Trypanosoma trans-sialidase. Ann Rev Microbiol 1994; 48: 499–523.

    Article  CAS  Google Scholar 

  99. Shi B-B, Ishikawa N, Itoh H et al. Goblet cell mucins of four genera of the subfamily cricetinae with reference to the protective activity against stronglyoides venezuelensis. Parasite Immunol 1994; 16: 553–559.

    Article  PubMed  CAS  Google Scholar 

  100. Forstner J, Maxwell B, Roomi N et al. Intestinal secretion of mucus in chronically reserpine treated rats. Am J Physiol 1981; 241: G443.

    PubMed  CAS  Google Scholar 

  101. Ishikawa N, Shi B-B, Khan AI et al. Reserpine-induced sulphomucin production by goblet cells in the jejunum of rats and its significance in the establishment of in-testinal helminths. Parasite Immunol 1995; 17: 581–586.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brockhausen, I., Kuhns, W. (1997). Microorganisms. In: Glycoproteins and Human Disease. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21960-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21960-7_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21962-1

  • Online ISBN: 978-3-662-21960-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics