Skip to main content

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

  • 105 Accesses

Abstract

Inflammation may be acute or chronic, and may occur as a primary event or secondary to another disease process. Common to all forms of inflammation is endothelial injury followed by recruitment of phagocytes and immunocytes. Carbohydrates are key to the ensuing cellular response. Sialyl-Lex has been recognized as a critical cell surface ligand in inflammatory reactions since it can bind to selectins that participate in early leukocyte-endothelial interactions1 and may also participate in integrin-mediated interactions. E-selectin is induced on endothelial cells in a variety of acute inflammatory conditions such as tonsillitis, appendicitis and delayed hypersensitivity reactions and its appearance correlates with the extravasation of neutrophils. P-selectin is expressed in Grave’s disease and rheumatoid arthritits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Welply JK, Keene JL, Schmuke JJ et al. Selectins as potential targets of therapeutic intervention in inflammatory diseases. Biochim Biophys Acta 1994; 1197: 215–226.

    Article  PubMed  CAS  Google Scholar 

  2. Etzioni A, Frydman M, Pollack S et al. Brief report:recurrent severe infections caused by a novel leukocyte adhesion deficiency. New Eng J Med 1992; 327: 1789–1792.

    Article  PubMed  CAS  Google Scholar 

  3. von Andrian UH, Berger EM, Ramezani L et al. In vivo behavior of neutrophils from two patients with distinct inherited leukocyte adhesion deficiency syndrome. J Clin Invest 1993; 91: 2893–2897.

    Article  Google Scholar 

  4. Stocks SC, Hopwood D, Sanders DSA et al. The expression of Lewisx on carcinoembryonic antigen (CEA)-related glycoproteins of normal and inflamed oesophageal squamous mucosa. Glycosyl Dis 1994; 1: 279–286.

    CAS  Google Scholar 

  5. van Dijk W, Havenaar EC, Brinkman-van der Linden ECM. al-Acid glycoprotein (orosomucoid):pathophysiological changes in glycosylation in relation to its function. Glyconconj J 1995; 12: 227–233.

    Article  Google Scholar 

  6. Sarkar M, Moorkerjea S. Effect of dexamethasone on the synthesis of dolichollinked saccharides and glycoproteins in hepatocytes prepared from control and inflamed rats. Biochem J 1985; 227: 675–682.

    PubMed  CAS  Google Scholar 

  7. Mulligan MS, Lowe JB, Larsen RD et al. Protected effects of sialylated oligosaccharides in immune complex-induced acute lung injury. J Exp Med 1993; 178: 623–631.

    Article  PubMed  CAS  Google Scholar 

  8. Skurk C, Buerke M, Guo J-P et al. Sialyl Lewisx-containing oligosaccharide exerts beneficial effects in murine traumatic shock. Am J Physiol 1994; 267: H2124–2131.

    PubMed  CAS  Google Scholar 

  9. Bazzoni G, Nunez AB, Mascellani G et al. Effect of heparin, dermatan sulfate and related oligo-derivatives on human polymor-phonuclear functions. J Lab Clin Med 1993; 121: 268–275.

    PubMed  CAS  Google Scholar 

  10. Arfors K, Ley K. Sulfated polysaccharides in inflammation. J Lab Clin Med 1993; 121: 201–202.

    PubMed  CAS  Google Scholar 

  11. Slomiany BL, Murty VLN, Piotrowski J et al. Glycosulfatase activity of Helicobacter pylori toward gastric mucin. Biochem Biophys Res Comm 1992; 183: 506–513.

    Article  PubMed  CAS  Google Scholar 

  12. Slomiany BL, Murty VLN, Piotrowski J et al. Glycosulfatase activity of Porphyromonas gingivalis, a bacterium associated with peridontal disease. Biochem Mol Biol Int 1993; 29: 973–980.

    PubMed  CAS  Google Scholar 

  13. Parekh RB, Dwek RA, Sutton BJ et al. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 1985; 316: 452–457.

    Article  PubMed  CAS  Google Scholar 

  14. Tsuchiya N, Endo T, Matsuta K et al. Effects of galactose depletion from oligosaccharide chains on immunological activities of human IgG. J Rheumatol 1989; 16: 285–290.

    PubMed  CAS  Google Scholar 

  15. Malhotra R, Wormald MR, Rudd PM et al. Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nature Med 1995; 1: 237–243.

    Article  PubMed  CAS  Google Scholar 

  16. Furukawa K, Kobata A. IgG galactosylation-its biological significance and pathology. Mol Immun 1991; 28: 1333–1340.

    Article  CAS  Google Scholar 

  17. Rademacher TW, Williams P, Dwek RA. Agalactosyl glycoforms of IgG autoantibodies are pathogenic. Proc Natl Acad Sci USA 1994; 91: 6123–6127.

    Article  PubMed  CAS  Google Scholar 

  18. Jones MG, Dilly SA, Bond A et al. Changes in the glycosylation of IgG in the collagen-induced model of arthritis. Glycosyl Dis 1994; 1: 105–110.

    CAS  Google Scholar 

  19. Gleeson PA. Glycoconjugates in autoimmunity. Biochim Biophys Acta 1994; 1197: 237–255.

    PubMed  Google Scholar 

  20. Allen D, Connolly N, Biggart J. Mucin profiles in ulcerative colitis with dysplasia and carcinoma. Histopathology 1988; 13: 413–424.

    Article  PubMed  CAS  Google Scholar 

  21. Jacobs LR, Huber PW. Regional distribution and alterations of lectin binding to colorectal mucin in mucosal biopsies from control and subjects with inflammatory bowel disease. J Clin Invest 1985; 75: 112–118.

    Article  PubMed  CAS  Google Scholar 

  22. Clamp JR, Fraser G, Read AE. Study of the carbohydrate content of mucus glycoproteins from normal and diseased colons. Clin Sci 1981; 61: 229–234.

    PubMed  CAS  Google Scholar 

  23. Raouf AH, Tsai HH, Parker N et al. Sulphation of colonic and rectal mucin in inflammatory bowel disease:reduced sulphation of rectal mucus in ulcerative colitis. Clin Sci 1992; 83: 623–626.

    PubMed  CAS  Google Scholar 

  24. Roberton A, McKenzie C, Sharfe N et al. A glycosulfatase that removes sulfate from mucus glycoprotein. Biochem J 1993; 293: 683–689.

    PubMed  CAS  Google Scholar 

  25. Rhodes J, Black R, Gallimore R et al. Histochemical demonstration of desialation and desulfation of normal and inflammatory bowel disease rectal mucus by fecal extracts. Gut 1985; 26: 1312–1318.

    Article  PubMed  CAS  Google Scholar 

  26. Morita H, Kettlewell MGW, Jewell DP et al. Glycosylation and sulphation of colonic mucus glycoproteins in patients with ulcerative colitis and in healthy subjects. Gut 1993; 34: 926–932.

    Article  PubMed  CAS  Google Scholar 

  27. Boland CR, Lance P, Levin B et al. Abnormal goblet cell glycoconjugates in rectal biopsies associated with an increased risk of neoplasia in patients with ulcerative colitis:early results of a prospective study. Gut 1984; 25: 1364–1371.

    Article  PubMed  CAS  Google Scholar 

  28. Kim YS, Byrd JC. Ulcerative colitis:a specific mucin defect? Gastroenterology 1984; 87: 1193–1195.

    PubMed  CAS  Google Scholar 

  29. Kim YS, Isaacs R. Glycoprotein metabolism in inflammatory and neoplastic diseases of the human colon. Cancer Res 1975; 35: 2092–2097.

    PubMed  CAS  Google Scholar 

  30. Rankin BJ, Srivastava ED, Record CO et al. Patients with ulcerative colitis have reduced mucin polymer content in the adherent colonic mucus gel. Biochem Soc Trans 1995; 23: 1045.

    Google Scholar 

  31. Parker N, Tsai HH, Ryder SD et al. Increased rate of sialylation of colonic mucin by cultured ulcerative colitis mucosal ex-plants. Digestion 1995; 56: 52–56.

    Article  PubMed  CAS  Google Scholar 

  32. McMahon RFT, Jones CJP, Dutt S et al. Altered oligo-saccharide expression in ulcerative colitis with increasing grades of inflammation. Glycosyl Dis 1994; 1: 235–245.

    Google Scholar 

  33. Fenger C, Filipe MI. Mucin histochemistry of the anal canal epithelium. Studies of 38 normal anal mucosa and mucosa adjacent to carcinoma. Histochem J 1981; 13: 921–930.

    Article  PubMed  CAS  Google Scholar 

  34. Itzkowitz SH, Young E, Dubois D et al. Sialosyl-Tn antigen is prevalent and precedes dysplasia in ulcerative colitis:a retrospective case-control study. Gastroenterol 1996; 110: 694–704.

    Article  CAS  Google Scholar 

  35. Reid PE, Culling CFA, Dunn WL et al. Chemical and histochemical study of normal and diseased human gastrointestinal tract. A comparison between histologically normal colon, colonic tumors, ulcerative 40. colitis and diverticular disease of the colon. Histochem J 1984; 16: 235–251.

    Article  PubMed  CAS  Google Scholar 

  36. Sasaki M, Kono N, Nakanuma Y. Membranous expression of Lewis Y antigen in clus- 41. tered hepatocytes in chronic viral, autoimmune, and alcoholic liver diseases but not in biliary diseases. Mod Path 1994; 7: 339–346.

    CAS  Google Scholar 

  37. Kim YS, Perdomo J, Whitehead JS et al., Glycosyltransferases in human blood. II. Study of serum galactosyltransferase and N- acetylgalactosaminyltransferase in patients with liver diseases. J Clin Invest 1972; 51: 2033–2039.

    Article  PubMed  CAS  Google Scholar 

  38. Lammers G, Jamieson JC. The role of a cathepsin D-like activity in the release of Ga1131–4G1cNAc a2–6-sialyltransferase from rat liver Golgi membranes during the acute-phase response. Biochem J 1988; 256: 623–631.

    PubMed  CAS  Google Scholar 

  39. Lammers G, Jamieson JC. Cathepsin D-like activity in the release of Galbetal4G1cNAca2–6sialyltransferase from mouse and guinea pig liver Golgi membranes during the acute phase response. J Comp Biochem Physiol 1990; 95: 327–334.

    CAS  Google Scholar 

  40. Fraser IH, Coolbear T, Sakar M. Increase of sialytransferase activity in the serum and liver of inflamed rats. Biochim Biophys Acta 1984; 799: 102–105.

    Article  PubMed  CAS  Google Scholar 

  41. Kaplan HA, Woloski BMRNJ, Hellman M et al. Studies on the effect of inflammation on rat liver and serum sialyltransferase. Evidence that inflammation causes release of Galß1-*4G1cNAc a2–6 sialyltransferase from liver. J Biol Chem 1983; 258: 11505–11509.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brockhausen, I., Kuhns, W. (1997). Inflammatory Diseases. In: Glycoproteins and Human Disease. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21960-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21960-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21962-1

  • Online ISBN: 978-3-662-21960-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics