Skip to main content

Glycosylation in Cystic Fibrosis

  • Chapter
Glycoproteins and Human Disease

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

Abstract

Cystic fibrosis (CF) is characterized by increased viscosity of secreted mucus and clogging of exocrine gland ducts with mucosal debris.1 There is an increased susceptibility to infections in the lungs, particularly to Pseudomonas aeruginosa and Pseudomonas cepacia strains, contributing to the high mortality.2,3 Intestinal blockage by mucus, i.e. meconeum ileus, may occur in affected infants. The protein that is abnormal in CF is the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride transport channel. The CFTR gene has been cloned and expressed.4,5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wood R, Boat T, Doershuk C. Cystic fibrosis. Am Rev Resp Dis 1976; 113: 833–878.

    PubMed  CAS  Google Scholar 

  2. Sajjan U, Corey M, Karmali M et al. Binding of nonmucoid Pseudomonas aeruginosa to normal human intestinal mucin and respiratory mucin from patients with cystic fibrosis. J Clin Invest 1992; 89: 657–665.

    Article  PubMed  CAS  Google Scholar 

  3. Sajjan U, Corey M, Karmali M et al. Binding of Pseudomonas cepacia to normal human intestinal mucin and respiratory mucin from patients with cystic fibrosis. J Clin Invest 1992; 89: 648–656.

    Article  PubMed  CAS  Google Scholar 

  4. Rommens J, Iannuzzi M, Kerem B et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 1989; 245: 1059–1065.

    Article  PubMed  CAS  Google Scholar 

  5. Quinton P. Cystic fibrosis: a disease in electrolyte transport. FASEB J 1990; 4: 2709–2717.

    PubMed  CAS  Google Scholar 

  6. Pind S, Riordan J, Williams D. Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 1994; 269: 12784–12788.

    PubMed  CAS  Google Scholar 

  7. Demolombe S, Baro I, Laurent M et al. Abnormal subcellular localization of mutated CFTR protein in a cystic fibrosis epithelial cell line. Eur J Cell Biol 1994; 65: 214–219.

    PubMed  CAS  Google Scholar 

  8. Kuver R, Ramesh N, Savard C et al. Mucin secretion linked to CFTR expression in epithelial cells. Pediat Pulmonol 1994; 16: 244.

    Google Scholar 

  9. Morris A, Cunningham S, Benos D et al. Glycosylation status of endogenous CFTR does not affect cAMP stimulated Cl secretion in epithelial cells. Am J Physiol 1993; 265: C688–694.

    PubMed  CAS  Google Scholar 

  10. Cheng P, Boat T, Cranfill K et al. Increased sulfation of glycoconjugates by cultured nasal epithelial cells from patients with cystic fibrosis. J Clin Invest 1989; 84: 68–72.

    Article  PubMed  CAS  Google Scholar 

  11. Mawhinney T, Adelstein E, Morris D et al. Structure determination of five sulfated oligosaccharides derived from tracheobronchial mucus glycoproteins. J Biol Chem 1987; 262: 2994–3001.

    PubMed  CAS  Google Scholar 

  12. Roussel P, Lamblin G, Degand P et al. Heterogeneity of the carbohydrate chains of sulfated bronchial glycoproteins isolated from a patient suffering from cystic fibrosis. J Biol Chem 1975; 250: 2114–2122.

    PubMed  CAS  Google Scholar 

  13. Lamblin G, Rahmoune H, Wieruszeski J-M et al. Structure of two sulfated oligosaccharides from respiratory mucins of a patient suffering from cystic fibrosis. Biochem J 1991; 275: 199–206.

    PubMed  CAS  Google Scholar 

  14. Wesley AW, Forstner JF, Forstner GG. Structure of intestinal-mucus glycoprotein from human post-mortem or surgical tissue:inferences from correlation analyzes of sugar and sulfate composition of individual mucins. Carbohydr Res 1983; 115: 151–163.

    Article  PubMed  CAS  Google Scholar 

  15. Chace K, Leahy D, Martin R et al. Respi- ratory mucous secretions in patients with cystic fibrosis:relationship between levels of highly sulfated mucin component and severity of the disease. Clin Chim Acta 132: 142–155.

    Google Scholar 

  16. Zhang Y, Doranz B, Yankaskas JR Genotypic analysis of respiratory mucous sulfation defects in cystic fibrosis. J Clin Invest 1995; 96: 2997–3004.

    Article  PubMed  CAS  Google Scholar 

  17. Cheng P, Boat T, Cranfill K et al. Increased sulfation of glycoconjugates by cultured nasal epithelial cells from patients with cystic fibrosis. J Clin Invest 1989; 84: 68–72.

    Article  PubMed  CAS  Google Scholar 

  18. Elgavish A, Meezan E. Increased sulfate uptake in skin fibroblasts isolated from cystic fibrosis patients. Biochem Biophys Res Comm 1988; 152: 99–106.

    Article  PubMed  CAS  Google Scholar 

  19. Elgavish A, Meezan E. Altered sulfate transport via anion exchange in CFPAC is corrected by retrovirus-mediated CFTR gene transfer. Am J Physiol 1992; 253: C176 - C186.

    Google Scholar 

  20. Lo-Guidice J, Wieruszeski J, Lemoine J et al. Sialylation and sulfation of the carbohydrate chains in respiratory mucins from a patient with cystic fibrosis. J Biol Chem 1994; 269: 18794–18813.

    PubMed  CAS  Google Scholar 

  21. Breg J, Van Halbeek H, Vliegenthart JF et al. Primary structure of neutral oligosaccharides derived from respiratory-mucus glycoproteins of a patient suffering from bronchiectasis, determined by combination of 500-MHz 1H-NMR spectroscopy and quantitative sugar analysis. 2. Structure of 19 oligosaccharides having the G1cNAc beta (1–3)GaINAc-o1 core (type 3) or the G1cNAc beta (1–3) [G1cNAc beta (16)1GaINAc-ol core (type 4). Eur J Biochem 1988; 171: 643–654.

    Article  PubMed  CAS  Google Scholar 

  22. Lamblin G, Boersma A, Klein A et al. Primary structure determination of five sialylated oligosaccharides derived from bronchial mucus glycoproteins of patients suffering from cystic fibrosis. The occurrence of the NeuAca(2 -a 3)Galß(1–4)[Fuca(1–3)G1cNAcl(1–s) structural element revealed by 500-MHz 1H NMR spectroscopy. J Biol Chem 1984; 259: 9051–9058.

    PubMed  CAS  Google Scholar 

  23. van Halbeek H, Dorland L, Vliegenthart J et al. Primary-structure determination of fourteen neutral oligosaccharides derived from bronchial mucus glycoproteins of patients suffering from cystic fibrosis, employing 500 MHz H NMR spectrscopy. Eur J Biochem 1982; 127: 7–20.

    Article  PubMed  Google Scholar 

  24. van Halbeek H, Breg J, Vliegenthart J et al. Isolation and structural characterization of low-molecular-mass monosialyl oligosaccharides derived from respiratory mucus glycoproteins of a patient suffering from bronchiectasis. Eur J Biochem 1988; 177: 443–460.

    Article  PubMed  Google Scholar 

  25. Carnoy C, Ramphal R, Scharfman A et al. Altered carbohydrate composition of salivary mucins from patients with cystic fibrosis and the adhesion of Pseudomonas aeruginosa. Am J Respir Cell Molec Biol 1993; 9: 323–334.

    Article  CAS  Google Scholar 

  26. Kane R, Penny J, Walker K et al. Changes in the CA 19–9 antigen and Lewis blood group with pulmonary disease severity in cystic fibrosis. Pediat Pulmonol 1992; 12: 221–226.

    Article  CAS  Google Scholar 

  27. Reddy M, Levine M, Prakobphol A. Oligosaccharide structures of the low-molecular-weight salivary mucin from a normal individual and one with cystic fibrosis. J Dent Res 1985; 64: 33–36.

    Article  PubMed  CAS  Google Scholar 

  28. Scanlin T, Wang Y, Glick M. Altered fucosylation of membrane glycoproteins from cystic fibrosis fibroblasts. Pediat Res 1985; 19: 368–374.

    Article  PubMed  CAS  Google Scholar 

  29. Wang Y, Hare T, Won B et al. Additional fucosyl residues on membrane glycoproteins but not a secreted glycoprotein from cystic fibrosis fibroblasts. Clin Chim Acta 1990; 188: 193–210.

    Article  PubMed  CAS  Google Scholar 

  30. Rao GJS, Spells G, Nadler HL. Enhanced UDP-galactose:glycoprotein galactosyl transferase activity in cultivated skin fibroblasts from patients with cystic fibrosis and its possible relationship to the pathogenesis of the disease. Pediat Res 1977; 11: 981–985.

    Article  PubMed  CAS  Google Scholar 

  31. Dosanjh A, Lencer W, Brown D et al. Heterologous expression of delta F508 CFTR results in decreased sialylation of membrane glycoconjugates. Am J Physiol 1994; 266: C360 - C366.

    PubMed  CAS  Google Scholar 

  32. Margolies R, Boat T. The carbohydrate content of IgG from patients with cystic fibrosis. Pediat Res 1983; 17: 931–935.

    Article  PubMed  CAS  Google Scholar 

  33. Ben-Yoseph Y, DeFranco CL, Nadler HL. The metabolism of sialic acid in cystic fibrosis. Pediat Res 1981; 15: 839–842.

    Article  PubMed  CAS  Google Scholar 

  34. Alhadeff J, Cimino G. Cystic fibrosis liver sialyltransferase. Clin Genet 1978; 13: 207–212.

    Article  PubMed  CAS  Google Scholar 

  35. Dische Z, Pallavicini C, Kavasaki H et al. Influence of the nature of the secretory stimulus on the composition of the carbohydrate moiety of glycoproteins of the sub-maxillary saliva. Arch Biochem 1962; 97: 459–469.

    Article  PubMed  CAS  Google Scholar 

  36. Clamp JR, Gough M. Study of the oligosaccharide units from mucus glycoproteins of meconium from normal infants and from cases of cystic fibrosis with meconium ileus. Clin Sci 1979; 57: 445–451.

    PubMed  CAS  Google Scholar 

  37. Lazatin J, Glick M, Scanlin T. Fucosylation in cystic fibrosis airway epithelial cells. Glycosl Dis 1994; 1: 263–270.

    Google Scholar 

  38. Louisot P, Levrat C. A new pathogenic hypothesis for cystic fibrosis: hyperactivity of glycosyltransferases at microsomic level. Clin Chim Acta 1973; 48: 373–376.

    Article  PubMed  CAS  Google Scholar 

  39. Garber N, Guempel U, Belz A et al. On the specificity of the D-galactose-binding lectin (PA-1) of Pseudomonas aeruginosa and its strong binding to hydrophobic derivatives of D-galactose and thiogalactose. Biochem Biophys Acta 1992; 1116: 331–333.

    Article  PubMed  CAS  Google Scholar 

  40. Ramphal R, Carnoy C, Fiebre S et al. Pseudomonas aeruginosa recognizes carbohydrate chains containing type 1(Glc1313G1cNAc) or type 2(Galßl-4GalNAc) disaccaride units. Infect Immun 1991; 59: 700–704.

    PubMed  CAS  Google Scholar 

  41. Zach M. Lung disease in cystic fibrosis-an updated concept. Pediat Pulmonol 1990; 8: 188–202.

    Article  CAS  Google Scholar 

  42. Forstner J, Maxwell B, Roomi N. Intestinal secretion of mucus in chronically reserpine treated rats. Am J Physiol 1981; 241: G443.

    PubMed  CAS  Google Scholar 

  43. Forstner J, Roomi N, Khorasani R et al. Effect of reserpine on the histochemical and biochemical properties of rat intestinal mucin. Exp Mol Path 1991; 54: 129–143.

    Article  CAS  Google Scholar 

  44. Snouwaert J, Brigman K, Latour A et al. An animal model for cystic fibrosis made by gene targeting. Science 1992; 257: 1083–1088.

    Article  PubMed  CAS  Google Scholar 

  45. Dorin J, Dickinson P, Alton E et al. Cystic fibrosis in the mouse by targeted insertional mutagenesis. Nature 1992; 359: 211–215.

    Article  PubMed  CAS  Google Scholar 

  46. Kent G, Oliver M, Foskett K et al. Phenotypic abnormalities in long-term surviving cystic fibrosis mice. Pediat Res 1996; 40: 1–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brockhausen, I., Kuhns, W. (1997). Glycosylation in Cystic Fibrosis. In: Glycoproteins and Human Disease. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21960-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21960-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21962-1

  • Online ISBN: 978-3-662-21960-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics