Skip to main content

General Glycoprotein Functions

  • Chapter
Glycoproteins and Human Disease

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

  • 105 Accesses

Abstract

Mucins are the major glycoprotein components of mucous secretions; they may also occur on cell membranes; the peptide backbone typically has highly O-glycosylated tandem repeat sequences and Cys rich amino and carboxyl-terminal ends that may polymerize to form long thread-like molecules of several million molecular weight. Mucins are produced and secreted by goblet cells, specialized epithelial cells which can store and condense mucin in secretory vesicles. Human MUC mucin genes encode mucin core proteins which are variably expressed and glycosylated in different tissues.1–4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gendler SJ, Spicer AP, Lalani E-N et al. Structure and biology of a carcinoma-associated mucin, MUC1. Am Rev Respir Dis 1991; 144: S42 - S47.

    Article  PubMed  CAS  Google Scholar 

  2. Braga VMM, Pemberton LF, Duhig T et al. Spatial and temporal expression of an epithelial mucin, MUC-1, during mouse development. Development 1992; 115: 427–437.

    PubMed  CAS  Google Scholar 

  3. Audie JP, Janin A, Porchet N et al. Expression of human mucin genes in respiratory, digestive, and reproductive tracts ascertained by in situ hybridization. J Histochem Cytochem 1993; 41: 1479–1485.

    Article  PubMed  CAS  Google Scholar 

  4. Verma M, Davidson E. Mucin gene: structure, expression and regulation. Glycoconj J 1994; 11: 172–179.

    Article  PubMed  CAS  Google Scholar 

  5. Dekker J, Strous G. Covalent oligomerization of rat gastric mucin occurs in the rough endoplasmic reticulum, is N-glycosylation dependent, and precedes initial 0-glycosylation. J Biol Chem 1990; 265: 18116–18122.

    PubMed  CAS  Google Scholar 

  6. Helenius A. How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Molec Biol Cell 1994; 5: 253–265.

    PubMed  CAS  Google Scholar 

  7. McCool D, Forstner J, Forstner G. Synthesis and secretion of mucin by the human colonic tumor cell line LS180. Biochem J 1994; 302: 111–118.

    PubMed  CAS  Google Scholar 

  8. Gerken TA, Butenhof KJ, Shogren R. Effects of glycosylation on the conformation and dynamics of 0-linked glycoproteins: carbon-13 NMR studies of ovine submaxillary mucin. Biochem 1989; 28: 5536–5543.

    Article  CAS  Google Scholar 

  9. Feizi T, Childs R. Carbohydrates as antigenic determinants of proteins. Biochem J 1987; 245: 1–11.

    PubMed  CAS  Google Scholar 

  10. Klein A, Carnoy C, Wieruszeski J et al. The broad diversity of neutral and sialylated oligosaccharides derived from human salivary mucins. Biochemistry 1992; 31: 6152–6165.

    Article  PubMed  CAS  Google Scholar 

  11. Dowbenko D, Andalibi A, Young PE et al. Structure and chromosomal localization of the murine gene encoding GLYCAM 1. A mucin-like endothelial ligand for L selectin. J Biol Chem 1993; 268: 4525–4529.

    PubMed  CAS  Google Scholar 

  12. Ogata S, Maimonis PJ, Itzkowitz SH. Mucins bearing the cancer-associated sialosylTn antigen mediate inhibition of natural killer cell toxicity. Cancer Res 1992; 52: 4741–4746.

    PubMed  CAS  Google Scholar 

  13. Slomiany BL, Murty VLN, Piotrowski J et al. Glycosulfatase activity of Helicobacter pylori toward gastric mucin. Biochem Biophys Res Comm 1992; 183: 506–513.

    Article  PubMed  CAS  Google Scholar 

  14. Roberson A, McKenzie C, Sharfe N et al. A glycosulfatase that removes sulfate from mucus glycoprotein. Biochem J 1993; 293: 683–689.

    Google Scholar 

  15. Corfield A, Wagner S, Clamp J et al. Mucin degradation in the human colon. Production of sialidase, sialate 0-acetylesterase, N-acetylneuraminate lyase, arylesterase and glycosulfatase activities by strains of fecal bacteria. Infec Immun 1992; 60: 3971–3978.

    CAS  Google Scholar 

  16. Hoskins L. Degradation of mucus glycoproteins in the gastrointestinal tract. In: Horowitz M, Pigman W eds. The Glycoconjugates Vol 2. New York: Academic Press, 1978: 235–253.

    Chapter  Google Scholar 

  17. Wu K, Salas P, Yee L et al. Tissue and tumor expression of a cell surface glycoprotein complex containing an integral membrane glycoprotein activator of p185°“ Oncogene 1994; 9: 3139–3147.

    CAS  Google Scholar 

  18. Li Y, Carraway K, Carraway C. A glycoprotein complex serves as a core for a p185 containing, microfilament-associated signal transduction particle in ascites mammary tumor cell microvilli. Proc Amer Assoc Cancer Res 1995; 36: 53.

    Google Scholar 

  19. Lechner J, Wieland F, Sumper M. Biosynthesis of sulfated saccharides N-glycosidically linked to the protein via glucose. J Biol Chem 1985; 260: 860–866.

    PubMed  CAS  Google Scholar 

  20. Spillmann D, Thomas-Oates J, van Kuik J et al. Characterization of a novel sulfated carbohydrate unit implicated in the carbohydratecarbohydrate-mediated cell aggregation of the marine sponge Microciona prolifera. J Biol Chem 1995; 270: 5089–5097.

    Article  PubMed  CAS  Google Scholar 

  21. Freeze H, Yeh R, Miller A et al. Structural analysis of the asparagine-linked oligosaccharides from three lysosomal enzymes of dictyostelium discoideum. J Biol Chem 1983; 258: 14874–14879.

    PubMed  CAS  Google Scholar 

  22. Heifetz A, Watson C, Johnson A et al. Sulfated glycoproteins secreted by human vascular endothelial cells. J Biol Chem 1982; 257: 13581–13586.

    PubMed  CAS  Google Scholar 

  23. Green E, Gruenebaum J, Bielinska M et al. Sulfation of lutropin oligosaccharides with a cell-free system. Proc Natl Acad Sci USA 1984; 81: 5320–5324.

    Article  PubMed  CAS  Google Scholar 

  24. Mulder G, Jakoby W. Sulfation Chapt 5. In: Mulder G. ed. Conjugation reactions in drug metabolism. London: Taylor and Francis Ltd, 1990: 114–121.

    Google Scholar 

  25. Kato M, Wang H, Bernfield M et al. Cell surface syndecan-1 on distinct cell types differs in fine structure and ligand binding of its heparan sulfate chains. J Biol Chem 1994; 269: 18881–18890.

    PubMed  CAS  Google Scholar 

  26. Ramphal R, Carnoy C, Fiebre S et al. Pseudomonas aeruginosa recognizes carbohydrate chains containing type 1(Galßl3GINAc) or type 2(Galß1–4G1NAc) disaccharide units. Infect Immun 1991; 59: 700–704.

    PubMed  CAS  Google Scholar 

  27. Green P, Tamatani T, Watanabe T et al. High affinity binding of the leukocyte adhesion molecule L-selectin to 3’ sulfated Le a and Le x oligosaccharides and the predominance of sulfate in this interaction demonstrated by binding studies with a series of lipid-linked oligosaccharides. Biochem Biophys Res Comm 1992; 188: 244–251.

    Article  PubMed  CAS  Google Scholar 

  28. Green P, Yuen C, Childs R et al. Further studies of the binding specificity of the leukocyte adhesion molecule, L-selectin, towards sulfated oligosaccharides-suggestion of a link between the selectin-and the integrin-mediated lymphocyte adhesion systems. Glycobiology 1995; 5: 29–38.

    Article  PubMed  CAS  Google Scholar 

  29. Imai Y, Rosen S. Direct demonstration of heterogeneous sulfated 0-linked carbohydrate chains on an endothelial ligand for Lselectin. Glycoconj J 1993; 10: 34–39.

    Article  PubMed  CAS  Google Scholar 

  30. Imai Y, Lasky L, Rosen S. Sulfation requirement for G1yCAM-1 an endothelial ligand for L-selectin. Nature 1993; 361: 555–557.

    Article  PubMed  CAS  Google Scholar 

  31. Hemmerich S, Rosen SD. 6’-sulfated sialyl Lewis x is a major capping group of GlyCAM1. Biochemistry 1994; 33: 4830–4835.

    Article  PubMed  CAS  Google Scholar 

  32. Hemmerich S, Bertozzi CR, Leffler H. Identification of the sulfated monosaccharides of G1yCAM-1, an endothelial derived ligand for L-selectin. Biochemistry 1994; 33: 4820–4829.

    Article  PubMed  CAS  Google Scholar 

  33. Drickamer K. Clearing up glycoprotein hormones. Cell 1991; 67: 1029–1032.

    Article  PubMed  CAS  Google Scholar 

  34. Dharmesh S, Baenziger J. Estrogen modulates expression of the glycosyltransferases that synthesize sulfated oligosaccharides on lutropin. Proc Natl Acad Sci USA 1993; 90: 11127–11131.

    Article  PubMed  CAS  Google Scholar 

  35. Munakata H, Isemura M, Yosizawa Z. Enzymatic sulfation of exogenous high molecular weight glycopeptides by microsomal fraction of the rabbit uterine endometrium. J Biol Chem 1985; 260: 6851–6856.

    PubMed  CAS  Google Scholar 

  36. Dekan G, Gabel C, Farquhar M. Sulfate contributes to the negative charge of podocalyxin, the major sialoglycoprotein of the glomerular filtration slits. Proc Natl Acad Sci USA 1991; 88: 5398–5402.

    Article  PubMed  CAS  Google Scholar 

  37. Wilson A, Rider C. Evidence that leukosialin, CD43, is intensely sulfated in the murine T lymphoma line RDM-4. J Immun 1992; 148: 1777–1783.

    PubMed  CAS  Google Scholar 

  38. Shi B-B, Ishikawa N, Itoh H et al. Goblet cell mucins of four genera of the subfamily cricetinae with reference to the protective activity against stronglyoides venezuelensis. Parasite Immunol 1994; 16: 553–559.

    Article  PubMed  CAS  Google Scholar 

  39. Forstner J, Maxwell B, Roomi N. Intestinal secretion of mucus in chronically reserpine treated rats. Am J Physiol 1981; 241: G443.

    PubMed  CAS  Google Scholar 

  40. Ishikawa N, Shi B-B, Khan AI et al. Reserpine-induced sulphomucin production by goblet cells in the jejunum of rats and its significance in the establishment of intestinal helminths. Parasite Immunol 1995; 17: 581–586.

    Article  PubMed  CAS  Google Scholar 

  41. Ofosu F, Modi G, Blajchman M et al. Increased sulfation improves the anticoagulant activities of heparan sulfate and dermatan sulfate. Biochem J 1987; 248: 889–896.

    PubMed  CAS  Google Scholar 

  42. Ishihara M, Guo Y, Swiedler S. Selective impairment of the synthesis of basic fibroblast growth factor binding domains of heparan sulfate in a COS cell mutant defective in N-sulfotransferase. Glycobiology 1993; 3: 83–88.

    Article  PubMed  CAS  Google Scholar 

  43. Ishihara M, Guo Y, Wei Z et al. Regulation of biosynthesis of the basic fibroblast growth factor binding domains of heparin sulfate by heparin sulfate N-deacetylase/N-sulfotransferase expression. J Biol Chem 1993; 268: 20091–20095.

    PubMed  CAS  Google Scholar 

  44. Nakayama Y, Iwahana M, Sakamoto N et al. Inhibitory effects of a bacteria-derived sulfated polysaccharide against basic fibroblast growth factor-induced endothelial cell growth and chemotaxis. J Cell Physiol 1993; 154: 1–6.

    Article  PubMed  CAS  Google Scholar 

  45. DeAngelis P, Glabe C. Specific recognition of sulfate esters by bindin, a sperm adhesion protein from sea urchins. Biochim Biophys Acta 1990; 1037: 100–105.

    Article  PubMed  CAS  Google Scholar 

  46. Patankar M, Oehninger S, Barnett T et al. A revised structure for fucoidan may explain some of its biological activities. J Biol Chem 1993; 268: 21770–21776.

    PubMed  CAS  Google Scholar 

  47. Wohlfart P, Haase W, Molday R et al. Antibodies against synthetic peptides used to determine the topology and site of glycosylation of the cGMP gated channel from bovine rod photo receptors. J Biol Chem 1992; 267: 644–648.

    PubMed  CAS  Google Scholar 

  48. Hresko R, Kruse M, Strube M et al. Topology of the Glut-1 glucose transporter deduced from glycosylation scanning mutagenesis. J Biol Chem 1994; 269: 20482–20488.

    PubMed  CAS  Google Scholar 

  49. Helps CR, McGivan JD. Regulation of glycosylation of Lamp-1 in the bovine epithelial cell line NBL-1 by changes in the concentration of extracellular phosphate. Biochem J 1994; 303: 613–618.

    PubMed  CAS  Google Scholar 

  50. Ho K, Nichols CG, Lederer WJ et al. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 1993; 362: 31–38.

    Article  PubMed  CAS  Google Scholar 

  51. Schwalbe R, Wang Z, Wible B et al. Potassium channel structure and function as reported by a single glycosylation sequon. J Biol Chem 1995; 270: 15336–15340.

    Article  PubMed  CAS  Google Scholar 

  52. Smith B, Preston G, Spring F et al. Human red cell aquaporin CHIP. J Clin Invest 1994; 94: 1043–1049.

    Article  PubMed  CAS  Google Scholar 

  53. Williams D. Calnexin: a molecular chaperone with a taste for carbohydrate. Biochem Cell Biol 1995; 73: 123–132.

    Article  PubMed  CAS  Google Scholar 

  54. Ware F, Vassilakos A, Peterson P et al. The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded proteins. J Biol Chem 1995; 270: 4697–4604.

    Article  PubMed  CAS  Google Scholar 

  55. Kornfeld R, Kornfeld S. Assembly of asparagine-linked oligosaccharides. Ann Rev Biochem 1985; 54: 631–664.

    Article  PubMed  CAS  Google Scholar 

  56. Tector M, Salter R. Calnexin influences folding of human class I histocompatability proteins but not their assembly with 132 microglobulin. J Biol Chem 1995; 270: 19638–19642.

    Article  PubMed  CAS  Google Scholar 

  57. Williams D, Watts T. Molecular chaperones in antigen presentation. Curr Biol 1995; 7: 77–84.

    CAS  Google Scholar 

  58. Balow JP, Weissman JD, Kearse KP. Unique expression of major histocompatibility complex class I proteins in the absence of glucose trimming and calnexin association. J Biol Chem 1995; 270: 29025–29029.

    Article  PubMed  CAS  Google Scholar 

  59. Lukacs G, Mohamed A, Kartner N et al. Conformational maturation of CFTR but not its mutant counterpart (5508 CFTR) occurs in the endoplasmic reticulum and requires ATP. EMBO J 1994; 13: 6076–6086.

    PubMed  CAS  Google Scholar 

  60. Pind S, Riordan J, Williams D. Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 1994; 269: 12784–12788.

    PubMed  CAS  Google Scholar 

  61. Otteken A, Moss B. Calreticulin interacts with newly synthesized human immunodeficiency virus type 1 envelope glycoprotein, suggesting a chaperone function similar to that of calnexin. J Biol Chem 1996; 271: 97–103.

    Article  PubMed  CAS  Google Scholar 

  62. Dubuisson J, Rice CM. Hepatitis C virus glycoprotein folding:disulfide bond formation and association with Calnexin. J Virol 1996; 70: 778–786.

    PubMed  CAS  Google Scholar 

  63. Varki A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 1993; 3: 97–130.

    Article  PubMed  CAS  Google Scholar 

  64. Fujita H, Kawamoto K, Hanasaki K et al. Glycosylation-dependent binding of pancreatic type I phospholipase A2 to its specific receptor. Biochem Biophys Res Comm 1995; 209: 293–299.

    Article  PubMed  CAS  Google Scholar 

  65. Grace M, Grabowski G. Human acid ßglucosidase:glycosylation is required for catalytic activity. Biochem Biophys Res Commun 1990; 168: 771–777.

    Article  PubMed  CAS  Google Scholar 

  66. Carroll R, Ben-Zeev O, Doolittle M et al. Activation of lipoprotein lipase in cardiac myocytes by glycosylation requires trimming of glucose residues in the endoplasmic reticulum. Biochem J 1992; 285: 69–696.

    Google Scholar 

  67. Ben-Zeev O, Doolittle M, Davis R et al. Maturation of lipoprotein lipase. J Biol Chem 1992; 267: 6219–6227.

    PubMed  CAS  Google Scholar 

  68. Semenkovich C, Luo C, Nakanishi M et al. In vitro expression and site-specific mutagenesis of the cloned lipoprotein lipase gene. J Biol Chem 1990; 265: 5429–5433.

    PubMed  CAS  Google Scholar 

  69. Vernet T, Tessier D, Richardson C et al. Secretion of functional papain precursor from insect cells. J Biol Chem 1990; 265: 16661–16666.

    PubMed  CAS  Google Scholar 

  70. Winther J, Stevens T, Kielland-Brandt M. Yeast carboxypeptidase Y requires glycosylation for efficient intracellular transport, but not for vacuolar sorting, in vivo stability, or activity. Eur J Biochem 1991; 197: 681–689.

    Article  PubMed  CAS  Google Scholar 

  71. Barbaric S, Mrsa V, Ries B et al. Role of the carbohydrate part of yeast acid phosphatase. Arch Biochem Biophys 1984; 234: 567–575.

    Article  PubMed  CAS  Google Scholar 

  72. Toki D, Sarkar M, Yip B et al. Role of N-linked glycosylation of recombinant human core 2 136-N-acetylglucosaminyltransferase expressed in Sf9 insect cells. Submitted.

    Google Scholar 

  73. Aikawa J, Yamashita T, Nishiyama M et al. Effects of glycosylation on the secretion and enzyme activity of Mucor rennin, an aspartic proteinase of Mucor pusillus, produced by recombinant yeast. J Biol Chem 1990; 265: 13955–13959.

    PubMed  CAS  Google Scholar 

  74. Schälke N, Schmid F. Effect of glycosylation on the mechanism of renaturation of invertase from yeast. J Biol Chem 1988; 263: 8832–8837.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brockhausen, I., Kuhns, W. (1997). General Glycoprotein Functions. In: Glycoproteins and Human Disease. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21960-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21960-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21962-1

  • Online ISBN: 978-3-662-21960-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics