Skip to main content

Role of Glycoproteins of the Immune and Blood Coagulation Systems

  • Chapter

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

Abstract

Immunoglobulins and immunoglobulin-like cell surface domains are the most pervasive structures of the immune system. The latter group comprises over 70 members of the immunoglobulin superfamily which control cell behavior by acting as matrix binders, intercellullar adhesion molecules and/or signal transducing molecules. Many glycoproteins are found on the surfaces of cells of the immune system and their functions may be greatly influenced by glycosylation.1 For example, terminal sialic acid on lymphocytes helps to maintain normal homing patterns to tissues and organs; this function is altered following treatment of cells with neuraminidase.2 Neuraminidase also greatly reduces the colony forming ability of bone marrow stem cells.’ Selectin-mediated adhesion of leukocytes and tumor cells expressing sialyl Lex to endothelium is believed to antecede cell migration to ectopic sites of inflammation.4

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dustin ML, Staunton DE, Springer TA. Supergene families meet in the immune system. Immunol Today 1988; 9: 213–215.

    Article  PubMed  CAS  Google Scholar 

  2. Gesner B, Ginsburg V. Effect of glycosidases on the fate of transfused lymphocytes. Proc Natl Acad Sci USA 1964; 52: 750–755.

    Article  PubMed  CAS  Google Scholar 

  3. Tonelli Q, Meints R. Sialic acid:a specific role in hematopoietic spleen colony formation. J Supramolec Struct 1978; 8: 67–78.

    Article  CAS  Google Scholar 

  4. Hakomori S. Le x and related structures as adhesion molecules. Histochem J 1992; 24: 771–776.

    Article  PubMed  CAS  Google Scholar 

  5. Keppler 0, Moldenhauer G, Oppenländer M et al. Human Golgi ß-galactoside a-2–6sialyltransferase generates a group of sialylated B lymphocyte differentiation antigens. Eur J Immun 1992; 22: 2777–2781.

    Article  Google Scholar 

  6. Braesch-Andersen S, Stamenkovic I. Sialylation of the B lymphocyte molecule CD22 by a2,6sialyltransferase is implicated in the regulation of CD22-mediated adhesion. J Biol Chem 1994; 269: 11783–11786.

    PubMed  CAS  Google Scholar 

  7. Karasuno T, Kanayama Y, Nishiura T et al. Glycosidase inhibitors (castanospermine and swainsonine) and neuraminidase inhibit pokeweed mitogen-induced B cell maturation. Eur J Immun 1992; 22: 2003–2008.

    Article  CAS  Google Scholar 

  8. Recny M, Luther M, Knoppers M et al. Nglycosylation is required for human CD2 immunoadhesion functions. J Biol Chem 1992; 267: 22428–22434.

    PubMed  CAS  Google Scholar 

  9. Withka J, Wyss D, Wagner G et al. Structure of the glycosylated adhesion domain of human T lymphocyte glycoprotein CD2. Curr Biol 1993; 1: 69–81.

    CAS  Google Scholar 

  10. Narasimhan S, Lee J, Cheung R et al. ß1,4-mannosyl glycoprotein ß-1,4-N-acetylglucosaminyl transferase III in human B and T lymphocyte lines and in tonsillar B and T lymphocytes. Biochem Cell Biol 1988; 66: 889–900.

    Article  PubMed  CAS  Google Scholar 

  11. Lemaire S, Derappe C, Michalski J et al. Expression of 131–6 branched N-linked oligosaccharides is associated with activation in human T4 and T8 cell populations. J Biol Chem 1994; 269: 8069–8074.

    PubMed  CAS  Google Scholar 

  12. Carlsson S. Changes in glycan branching and sialylation of the Thy-1 antigen during normal differentiation of mouse T lymphocytes. Biochem J 1985; 226: 519–525.

    PubMed  CAS  Google Scholar 

  13. Carlsson S, Sasaki H, Fukuda M. Structural variations of 0-linked oligosaccharides present in leukosialin isolated from erythroid, myeloid, and T-lymphoid cell lines. J Biol Chem 1986; 261: 12787–12795.

    PubMed  CAS  Google Scholar 

  14. Fukuda M. Leukosialin, a major 0-glycancontaining sialoglycoprotein defining leukocyte differentiation and malignancy. Glycobiology 1991; 1: 347–356.

    Article  PubMed  CAS  Google Scholar 

  15. Ellies L, Jones A, Williams M et al. Differential regulation of CD43 glycoforms on CD4 and CD8 lymphocytes in graft versus host disease. Glycobiology 1994; 4: 885–893.

    Article  PubMed  CAS  Google Scholar 

  16. Piller F, Piller V, Fox R et al. Human T lymphocyte activation is associated with changes in 0-glycan biosynthesis. J Biol Chem 1988; 263: 15146–15150.

    PubMed  CAS  Google Scholar 

  17. Higgins E, Siminovitch K, Zhuang D et al. Aberrant 0-linked oligosaccharide biosynthesis in lymphocytes and platelets from patients with the Wiskott-Aldrich syndrome. J Biol Chem 1991; 266: 6280–6290.

    PubMed  CAS  Google Scholar 

  18. Piller F, Le Deist F, Weinberg KI et al. Altered 0-glycan synthesis in lymphocytes from patients with Wiscott-Aldrich syn- drome. J Exp Med 1991; 173: 1501–1510.

    Article  PubMed  CAS  Google Scholar 

  19. Mentzer S, Remold-O’Donnell E, Crimmins M et al. Sialophorin, a surface sialoglycoprotein defective in the WiskottAldrich syndrome, is involved in T-lymphocyte proliferation. J Exp Med 1987; 165: 1383–1392.

    Article  PubMed  CAS  Google Scholar 

  20. Pimlott N, Miller R. Glycopeptides inhibit allospecific cytotoxic T lymphocyte recognition in an MHC-specific manner. J Immun 1986; 136: 6–11.

    PubMed  CAS  Google Scholar 

  21. Muchmore A, Sathyamoorthy N, Decker J et al. Evidence that specific oligosaccharides block early events necessary for the expression of antigen-specific proliferation by human lymphocytes. J Immun 1980; 125: 1306–1311.

    PubMed  CAS  Google Scholar 

  22. Jeske DJ, Capra JD. Immunoglobulins: Structure and Function. Paul W ed. Fundamental Immunology. New York: Raven Press 1984; 131.

    Google Scholar 

  23. Hickman S, Kulczycki A, Lynch R et al. Studies of the mechanism of tunicamycin inhibition of IgA and IgE secretion by plasma cells. J Biol Chem 1977; 252: 4402 4408.

    Google Scholar 

  24. Huff T, Uede T, Iwata M et al. Modulation of the biologic activities of IgE-binding factors III. Switching of a T-cell hybrid clone from the formation of IgE-suppressive factor to the formation of IgE-potentiating factor. J Immun 1983; 131: 1090–1095.

    PubMed  CAS  Google Scholar 

  25. Huff T, Jardieu P, Ishizaka K. Regulatory effects of human IgE binding factors on the IgE response of rat lymphocytes. J Immun 1986; 136: 955–962.

    PubMed  CAS  Google Scholar 

  26. Rademacher T, Parekh R, Dwek R. Glycobiology. Ann Rev Biochem 1988; 57: 792–794.

    Article  Google Scholar 

  27. Aoki N, Furukawa K, Iwatsuki K et al. A. bovine IgG heavy chain contains Nacetylgalactosaminylated N-linked sugar chains. Biochem Biophys Res Comm 1995; 210: 275–280.

    Article  PubMed  CAS  Google Scholar 

  28. Ikeda K, Sannoh T, Kawasaki N et al. Serum lectin with known structure activates complement through the classical pathway. J Biol Chem 1987; 262: 7451–7454.

    PubMed  CAS  Google Scholar 

  29. Reading PC, Hartley CA, Ezekowitz AB et al. A serum mannose-binding lectin mediates complement-dependent lysis of influenza virus-infected cells. Biochem Biophys Res Comm 1995; 217: 1128–1136.

    Article  PubMed  CAS  Google Scholar 

  30. Lim B-L, Holmskov U. Expression of the carbohydrate recognition domain of bovine conglutinin and demonstration of its binding to iC3b and yeast mannan. Biochem Biophys Res Comm 1996; 218: 260–266.

    Article  PubMed  CAS  Google Scholar 

  31. Vivier E, Sorrell J, Ackerly M et al. Developmental regulation of a mucin-like glycoprotein selectively expressed on natural killer cells. J Exp Med 1993; 178: 2023–2033.

    Article  PubMed  CAS  Google Scholar 

  32. Ogata S, Maimonis PJ, Itzkowitz SH. Mucins bearing the cancer-associated sialosylTn antigen mediate inhibition of natural killer cell toxicity. Cancer Res 1992; 52: 4741–4746.

    PubMed  CAS  Google Scholar 

  33. El Ouagari K, Teissié J, Benoist H. Glycophorin A protects K562 cells from natural killer cell attack. Role of oligosaccharides. J Biol Chem 1995; 270: 26970–26975.

    Article  PubMed  Google Scholar 

  34. Bezouska K, Yuen CT, O’Brien J et al. Oligosaccharide ligands for NKR-P1 protein activate NK cells and cytotoxicity. Nature 1994; 372: 150–157.

    Article  PubMed  CAS  Google Scholar 

  35. Ahrens PB. Role of target cell glycoproteins in sensitivity to natural killer cell lysis. J Biol Chem 1993; 268: 385–391.

    PubMed  CAS  Google Scholar 

  36. Voshol H, Dullens H, Otter W et al. Cell surface glycoconjugates as possible target structures for human natural killer cells: evidence against the involvement of glycolipids and N-linked carbohydrate chains. Glycobiology 1993; 3: 69–76.

    Article  PubMed  CAS  Google Scholar 

  37. Mehta B, Collard H, Negrin R. The role of N-linked carbohydrate residues in lymphokine-activated killer cell-mediated cytolysis. Cell Immunol 1994; 155: 95–110.

    Article  PubMed  CAS  Google Scholar 

  38. Arkwright P, Rademacher T, Boutignon F et al. Suppression of allogeneic reactivity in vitro by the syncytiotrophoblast membrane glycocalyx of the human term placenta is carbohydrate dependent. Glycobiology 1994; 4: 39–47.

    Article  PubMed  CAS  Google Scholar 

  39. Kuhns W, Bramson S. Variable behavior of blood group H on HeLa cell population synchronized with thymidine. Nature 1968; 219: 938–939.

    Article  PubMed  CAS  Google Scholar 

  40. Thomas D. Cyclic expression of blood group determinants in murine cells and their relationship to growth control. Nature 1971; 233: 317–321.

    Article  PubMed  CAS  Google Scholar 

  41. Feizi T. Demonstration by monoclonal an tibodies that carbohydrate structures of glycoproteins and glycolipids are onto-developmental antigens. Nature 1985; 314: 1517.

    Google Scholar 

  42. Reid M. Associations of red blood cell membrane abnormalities with blood group phenotype. In: Garratty G. Immunobiology of Transfusion Medicine. New York: Marcel Dekker. 1994; 257–271.

    Google Scholar 

  43. Telen M. Erythrocyte blood group antigens: not so simple after all. Blood 1995; 85: 299–306.

    PubMed  CAS  Google Scholar 

  44. Hakomori S. New directions in cancer therapy based on aberrant expression of glycosphingolipids:anti-adhesion and orthosignalling therapy. Cancer Cells 1991; 3: 461–470.

    PubMed  CAS  Google Scholar 

  45. Moulds J. Association of blood group antigens with immunologically important proteins. In: Garratty G. Immunobiology of Transfusion Medicine. New York: Marcel Dekker 1994; 273–297.

    Google Scholar 

  46. King M. Blood group antigens on human erythrocytes-distribution, structure and possible functions. Biochim Biophys Acta 1994; 1197: 15–44.

    Article  PubMed  CAS  Google Scholar 

  47. Ugorski B, Blackall D, Pâhlsson P et al. Recombinant Miltenberger I and II human blood group antigens:the role of glycosylation in cell surface expression and antigenicity of glycophorin A. Blood 1993; 82: 1913–1920.

    PubMed  CAS  Google Scholar 

  48. Ridgwell K, Eyers S, Mawby W et al. Studies on the glycoprotein associated with Rh (Rhesus) blood group antigen expression in the human red blood cell membrane. J Biol Chem 1994; 269: 6410–6416.

    PubMed  CAS  Google Scholar 

  49. Tanner M, Jenkins R, Anstee D et al. Abnormal carbohydrate composition of the major penetrating membrane protein of En(a-) human erythrocytes. Biochem J 1976; 155: 701–703.

    PubMed  CAS  Google Scholar 

  50. Yang Z, Bergström J, Karlsson K. Glycoproteins with Gala4Gal are absent from human erythrocyte membranes, indicating that glycolipids are the sole carriers of blood group P activities. J Biol Chem 1994; 269: 14620–14624.

    PubMed  CAS  Google Scholar 

  51. Karlsson K. Animal glycosphingolipids as membrane attachment sites for bacteria. Ann Rev Biochem 1989; 58: 309–350.

    Article  PubMed  CAS  Google Scholar 

  52. Brown KE, Anderson SM, Young NS. Erythrocyte P antigen:cellular receptor for B19 parvovirus. Science 1993; 262: 114–117.

    Article  PubMed  CAS  Google Scholar 

  53. Hardisty R. Disorders of platelets. II Functional abnormalities. In: Lilleyman J, Hann I, eds. Pediatric Hematology. Edinburgh: Churchill Livingstone, 1992; 167–199.

    Google Scholar 

  54. Phillips D, Charo I, Parise L et al. The platelet membrane glycoprotein IIb-IIIa complex. Blood 1988; 71: 831–843.

    PubMed  CAS  Google Scholar 

  55. Da Silva M, Tamuri T, McBroom T et al. Tyrosine derivatization and preparative purification of the sialyl and asialyl N-linked oligosaccharides from porcine fibrinogen. Arch Biochem Biophys 1994; 312: 151–157.

    Article  PubMed  Google Scholar 

  56. Gilman P. The role of the carbohydrate moiety in the biological properties of fibrinogen. J Biol Chem 1984; 259: 32483253.

    Google Scholar 

  57. Martinez J, Palascak JE, Kwasniak D. Abnormal sialic acid content of the dysfibrinogenemia associated with liver disease. J Clin Invest 1978; 61: 535–538.

    Article  PubMed  CAS  Google Scholar 

  58. Beacham DA, Cruz MA, Handin RI. Glycoprotein Ib can mediate endothelial cell attachment to a von Willebrand factor substratum. Thromb Hemostasis 1995; 73: 309–317.

    CAS  Google Scholar 

  59. Clemetson K. Platelet activation:signal transduction via membrane receptors. Thromb Hemostas 1995; 74: 111–116.

    CAS  Google Scholar 

  60. Handin R, Wagner D. Molecular and cellular biology of von Willebrand factor. Prog Hemostasis Thromb 1989; 9: 233–259.

    CAS  Google Scholar 

  61. De Marco L, Mazzucato M, Masotti A et al. Localization and characterization of an a-thrombin binding site on platelet glycoprotein Iba. J Biol Chem 1994; 269: 64786484.

    Google Scholar 

  62. Gralnick H, Williams S, McKeown L et al. High-affinity a-thrombin binding to platelet glycoprotein Iba:identification of two binding domains. Proc Natl Acad Sci USA 1994; 91: 6334–6338.

    Article  PubMed  CAS  Google Scholar 

  63. Korrel S, Clemetson K, van Halbeek H et al. Identification of a tetrasialylated monofucosylated tetra-antennary N-linked carbohydrate chain in human platelet glycocalicin. FEBS Lett 1988; 228: 321–326.

    Article  PubMed  CAS  Google Scholar 

  64. Tsuji T, Tsunchisa S, Watanabe Y et al. The carbohydrate moiety of human platelet glycocalicin. J Biol Chem 1983; 258: 6335–6339.

    PubMed  CAS  Google Scholar 

  65. Michelson A, Loscalzo J, Melnick B et al. Partial characterization of a binding site for von Willebrand factor on glycocalicin. Blood 1986; 67: 19–26.

    PubMed  CAS  Google Scholar 

  66. Ruggeri Z. The platelet glycoprotein Ib-IX complex. Prog Hemostasis Thromb 1991; 10: 35–68.

    CAS  Google Scholar 

  67. Cruz M, Handin R, Wise R. The interaction of the von Willebrand factor-Al domain with platelet glycoprotein Ib/IX. J Biol Chem 1993; 268: 21238–21245.

    PubMed  CAS  Google Scholar 

  68. Lynch D, Williams R, Zimmerman T et al. Biosynthesis of the subunits of factor VIIIR by bovine aortic endothelial cells. Proc Natl Acad Sci USA 1983; 80: 2738–2742.

    Article  PubMed  CAS  Google Scholar 

  69. Tartakoff A. The combined function model of the Golgi complex:center for ordered processing of biosynthetic products of the rough ER. Int Rev Cytol 1983; 85: 221.

    Article  PubMed  CAS  Google Scholar 

  70. Hironaka T, Furukawa K, Esmon P et al. Structural study of the sugar chains of porcine factor VIII- tissue and species specific glycosylation of Factor VIII. Arch Biochem Biophys 1993; 307: 316–330.

    Article  PubMed  CAS  Google Scholar 

  71. Pirie-Sheperd S, Jett E, Andon N et al. Sialic acid content of plasminogen 2 glycoforms as a regulator of fibrinolytic activity. J Biol Chem 1995; 270: 5877–5881.

    Article  Google Scholar 

  72. Harris R, Leonard C, Guzzetta A et al. Tissue plasminogen activator has an O-linked fucose attached to threonine-61 in the epidermal growth factor domain. Biochemistry 1991; 30: 2311–2314.

    Article  PubMed  CAS  Google Scholar 

  73. Hajjar K, Reynolds C. a-Fucose mediated binding and degradation of tissue type plasminogen activator by HepG2 cells. J Clin Invest 1994; 93: 703–710.

    Article  PubMed  CAS  Google Scholar 

  74. Noorman F, Braat E, Rijken D. Degradation of tissue-type plasminogen activator by human monocyte derived macrophages is mediated by the mannose receptor and by the low density lipoprotein receptor-related protein. Blood 1995; 86: 3421–3427.

    PubMed  CAS  Google Scholar 

  75. Björk I, Ylinenjärvi K, Olsen ST et al. Decreased affinity of recombinant antithrombin for heparin due to increased glycosylation. Biochem J 1992; 286: 793–800.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brockhausen, I., Kuhns, W. (1997). Role of Glycoproteins of the Immune and Blood Coagulation Systems. In: Glycoproteins and Human Disease. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21960-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21960-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21962-1

  • Online ISBN: 978-3-662-21960-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics