Skip to main content

Die Chromosomentheorie der Vererbung

  • Chapter
Genetik

Part of the book series: Springer-Lehrbuch ((SLB))

  • 640 Accesses

Zusammenfassung

Hatten Mendels Versuche eine theoretische Grundlage für das Verständnis von Erbgängen geschaffen, so galt es in der Folgezeit, im Organismus nach den materiellen Trägern der Erbeigenschaften zu suchen. Die Grundlage für diese Suche hatten die klassischen Cytologen durch die mikroskopische Untersuchung der Grundbausteine aller Organismen, der Zellen, gelegt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

Weiterführende Literatur

  • Adolph KW (1988) Chromosomes and Chromatin. Vol I-III. CRC Press, Boca Raton

    Google Scholar 

  • Balbiani EG (1881) Sur la structure du noyau des cellules salivaires chez les larves de Chironomus. Zool Anz 4: 637–641

    Google Scholar 

  • Beermann W (1962) Riesenchromosomen. Protoplasmatologia V I D, Springer, Wien

    Book  Google Scholar 

  • Bostock CJ, Sumner AT (1978) The eukaryotic chromosome. North-Holland, Amsterdam

    Google Scholar 

  • Callan HG (1986) Lampenbürstenchromosomen. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Cremer T (1985) Von der Zellenlehre zur Chromosomentheorie. Springer, Berlin Heidelberg New York Tokyo

    Book  Google Scholar 

  • Duve C de (1984) A guided tour of the living cell. Freeman, San Francisco

    Google Scholar 

  • England MA (1990) A colour atlas of life before birth. Wolfe Medical Publications, London

    Google Scholar 

  • Margulis L (1970) Origin of eukaryotic cells. Yale Univ Press, New Haven

    Google Scholar 

  • Mitchison JM (1971) The biology of the cell cycle. Cambridge Univ Press, London

    Google Scholar 

  • Sager R (1972) Cytoplasmic genes and organelles. Academic Press, New York

    Google Scholar 

  • Swanson CP (1957) Cytology and Cytogenetics. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Traut W (1992) Chromosomen. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Weiss MJD (1973) Animal Cytology and Evolution. 3rd edition. Cambridge Univ Press, London

    Google Scholar 

Originalarbeiten und Übersichtsartikel

  • Attardi G, Schatz G (1988) Biogenesis of mitochondria. Annu Rev Cell Biol 4: 290–333

    Article  Google Scholar 

  • Bauer H (1952) Der Chromosomenzyklus der Orthocladiinen (Nematocera: Diptera). Z Naturforsch 7b: 557–563

    Google Scholar 

  • Beermann S (1977) The diminution of heterochromatic chromosomal segments in Cyclops (Crustacea, Copepoda). Chromosoma 60: 297–344

    Article  PubMed  CAS  Google Scholar 

  • Beermann W (1952) Chromomerenkonstanz und spezifische Modifikation der Chromosomenstruktur in der Entwicklung und Organdifferenzierung von Chironomus tentans. Chromosoma 5: 139–198

    Article  Google Scholar 

  • Benavente R (1991) Postmeiotic nuclear reorganization events analyzed in living cells. Chromosoma 100: 215–220

    Article  PubMed  CAS  Google Scholar 

  • Boveri T (1887) Über die Differenzierung der Zellkerne während der Furchung des Eies von Ascaris megalocephala. Anat Anz 2: 688–693

    Google Scholar 

  • Boveri T (1902) Über mehrpolige Mitosen als Mittel zur Analyse des Zellkerns. Verh physik-med Ges Würzburg (Neue Folge) 35: 67–90

    Google Scholar 

  • Breuer ME, Pavan C (1955) Behaviour of polytene chromosomes of Rhynchosciara angelae at different stages of larval development. Chromosoma 7: 371–386

    Article  Google Scholar 

  • Bridges CB (1913) Non-disjunction as a proof of the chromosome theory of heredity. Genetics 1: 1–52 und 107–162

    Google Scholar 

  • Bridges CB (1936) The bar „gene“ a duplication. Science 83: 210–211

    Article  PubMed  CAS  Google Scholar 

  • Brown SW (1966) Heterochromatin. Science 151: 417–425

    Article  PubMed  CAS  Google Scholar 

  • Creighton HB, McClintock B (1936) A correlation of cytological and genetic crossing-over in Zea mays. Proc Natl Acad Sci USA 17: 492–497

    Article  Google Scholar 

  • Duvick DN (1965) Cytoplasmic pollen sterility in corn. Adv Genet 13: 1–56

    Article  Google Scholar 

  • Edwardson JR (1970) Cytoplasmic male sterility. Bot Rev 36: 341–420

    Article  Google Scholar 

  • Flemming W (1882) Zellsubstanz, Kern und Zellteilung. Leipzig

    Google Scholar 

  • Forde BG, Leaver CJ (1980) Nuclear and cytoplasmic genes controlling synthesis of variant mitochondrial polypeptides in male-sterile maize. Proc Natl Acad Sci USA 77: 418–422

    Article  PubMed  CAS  Google Scholar 

  • Frankel R (1956) Graft-induced transmission to progeny of cytoplasmic male sterility in petunia. Science 124: 684–685

    Article  PubMed  CAS  Google Scholar 

  • Fuller MT, Wilson PG (1992) Force and counterforce in the mitotic spindle. Cell 71: 547–550

    Article  PubMed  CAS  Google Scholar 

  • Gabrusewycz-Garcia N (1964) Cytological and autoradio-graphic studies in Sciara coprophila salivary gland chromosomes. Chromosoma 15: 312–344

    Article  PubMed  CAS  Google Scholar 

  • Gerbi SA (1986) Unusual chromosome movements in Scia-rid flies. In: Hennig W (ed) Germ line-soma differentiation. Springer, Berlin Heidelberg New York Tokyo (Results and problems in cell differentation, vol 13 pp 71–104 )

    Google Scholar 

  • Giles RE, Blanc H, Cann HM, Wallace DC (1980) Maternal inheritance of human mitochondria. Proc Natl Acad Sci 77: 6715–6719

    Article  PubMed  CAS  Google Scholar 

  • Glover DM. Zaha A, Stocker AJ, Santnelli RV, Pueyo MT, de Toledo SM, Lara FJS (1982) Gene amplification in Rhynchosciara salivary gland chromosomes. Proc Natl Acad Sci USA 79: 2947–2951

    Google Scholar 

  • Gray MW (1989) Origin und evolution of mitochondrial DNA. Ann Rev Cell Biol 5: 25–50

    Article  PubMed  CAS  Google Scholar 

  • Haldane JBS (1919) The combination of linkage values and the calculation of distances between the loci of linked factors. J Genet 22: 299–309

    Google Scholar 

  • Hancock R (2000) A new look at the nuclear matrix. Chromosoma 108: 219–225

    Article  Google Scholar 

  • Heitz E (1929) Heterochromatin, Chromozentren, Chromomeren. Ber dtsch bot Ges 47: 274–284

    Google Scholar 

  • Heitz E (1934) Über a-und 13-Heterochromatin sowie Konstanz und Bau der Chromosomen bei Drosophila. Biol Zeitschrift 54: 588–609

    Google Scholar 

  • Heitz E, Bauer H (1933) Beweise für die Chromosomennatur der Kernschleifen in den Knäuelkernen von Bibio hortulanus L. Z Zellforsch mikroskop Anat 17: 67–82

    Article  Google Scholar 

  • Hennig W (1974) Giant chromosomes. In: Busch H (ed) The Cell Nucleus. Vol II. Academic Press, NewYork, pp 333–369

    Chapter  Google Scholar 

  • Hennig W (1987) Y chromosomal lampbrush loops of Drosophila. In: Hennig W (ed) Structure and function of eukaryotic chromosomes. Springer, Berlin Heidelberg New York Tokyo (Results and problems in cell differentiation, vol 14, pp 133–146 )

    Google Scholar 

  • Hinshaw JE, Carragher BO, Milligan RA (1992) Architecture and designe of the nucleare pore complex. Cell 69: 1133–1141

    Article  PubMed  CAS  Google Scholar 

  • Kemble RJ, Bedbrook JR (1980) Low molecular weight circular and linear DNA in mitochondria from normal and male-sterile Zea mays cytoplasm. Nature 284: 565–566

    Article  CAS  Google Scholar 

  • King RL, Beams HW (1934) Somatic synapsis in Chironomus with special reference to the individuality of the chromosomes. J Morphol 56: 577–586

    Article  Google Scholar 

  • Korge G (1977) Direct correlation between a chromosome puff and the synthesis of a larval saliva protein in Drosophila melanogaster. Chromosoma 62: 155–174

    Article  PubMed  CAS  Google Scholar 

  • Korge G (1987) Polytene chromosomes. In: Hennig W (ed) Structure and function of eukaryotic chromosomes. Springer, Berlin Heidelberg New York Tokyo (Results and problems in cell differentiation, vol 14, pp 27–58 )

    Google Scholar 

  • Lehner CF, Eppenberger HM, Fakan S, Nigg EA (1986) Nuclear substructure antigens. Monoclonals against components of nuclear matrix preparations. Exp Cell Res 162: 205–219

    Google Scholar 

  • Levings CS III, Prings DR (1976) Restriction endonuclease analysis of mitochondrial DNA from normal and Texas cytoplasm male-sterile maize. Science 193: 158–160

    Article  PubMed  CAS  Google Scholar 

  • Lindegren CC (1936) A six-point map of the sex chromosome of Neurospora crassa. J Genet 32: 243–256

    Article  Google Scholar 

  • Loidl, J (1991) Coming to grips with a complex matter. Chromosoma 100: 289–292

    Article  PubMed  CAS  Google Scholar 

  • Mather K (1933a) The relations between chiasmata and crossing-over in diploid and triploid Drosophila melanogaster. J Genet 27: 243

    Article  Google Scholar 

  • Mather K (1933b) Interlocking as a demonstration of the genetical crossing-over during chiasma-formation. Amer Nat 67: 476

    Article  Google Scholar 

  • Mather K (1938) The measurement of linkage in heredity. Chem Publ, New York

    Google Scholar 

  • McKee BD, Handel MA (1993) Sex chromosomes, recombination, and chromatin conformation. Chromosoma 102: 71–80

    Article  PubMed  CAS  Google Scholar 

  • Meyer GF, Hess O, Beermann W (1961) Phasenspezifische Funktionsstrukturen in den Spermatocytenkernen von Drosophila melanogaster und ihre Abhängigkeit vom Y-Chromosom. Chromosoma 12: 676–716

    Article  PubMed  CAS  Google Scholar 

  • Miescher F (1871) Chemische Zusammensetzung der Eiterzelle. In: Hoppe-Seyler, F. (Hrsg) Medicinisch-chemische Untersuchungen. S. 441–460

    Google Scholar 

  • Moses MJ (1956) Chromosomal structures in Crayfish spermatocytes. J biochem biophys Cytol 2: 215–218

    Article  CAS  Google Scholar 

  • Muller HJ (1916) The mechanism of crossing-over. Amer Nat 50: 193

    Article  Google Scholar 

  • Nilssohn-Tillgren T, Wettstein-Knowles P (1970) When is the male plastome eliminated? Nature 227: 1265–1266

    Article  Google Scholar 

  • Painter TS (1933) A new method for the study of chromosome rearrangements and the plotting of chromosome maps. Science 78: 585–586

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD (1985) Comparative organization of chloroplast genomes. Annu Rev Genet 19: 325–354

    Article  PubMed  CAS  Google Scholar 

  • Redei GP (1973) Extrachromosomal mutability determined by a nuclear locus in Arabidopsis. Mutat Res 18: 149–162

    Article  Google Scholar 

  • Rhoades MM (1943) Genic induction of an inherited cytoplasmic difference. Proc Natl Acad Sci USA 29: 327–329

    Article  PubMed  CAS  Google Scholar 

  • Rhoades MM (1946) Plastid Mutations. Cold Spring Harbor Symp Quant Biol 11: 202–207

    Article  Google Scholar 

  • Sheaff RJ, Roberts JM (1998) Regulation of the G1 phase. In: Pagano M (ed) Cell cycle control. Results and problems in cell differentiation. Springer, Berlin Heidelberg New York Tokyo, pp 1–34

    Google Scholar 

  • Sturtevant AH (1913) The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J Expt Zool 14: 43–59

    Article  Google Scholar 

  • Sutton WS (1903) The chromosomes in heredity. Biol Bull Wood’s Hole 4: 231–251

    Article  Google Scholar 

  • Täckholm G (1922) Zytologische Studien über die Gattung Rosa. Acta Horti Bergiani 7: 97–381

    Google Scholar 

  • Weismann A (1885) Die Continuität des Keimplasmas als Grundlage einer Theorie der Vererbung. Fischer, Jena

    Google Scholar 

  • Wilson EB (1900) The cell in development and inheritance. 2nd edn, pp 430–431, Macmillan, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hennig, W. (2002). Die Chromosomentheorie der Vererbung. In: Genetik. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21953-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21953-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21954-6

  • Online ISBN: 978-3-662-21953-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics