Skip to main content
Book cover

Genetik pp 463–534Cite as

Veränderungen von Genen: Mutationen

  • Chapter
  • 623 Accesses

Part of the book series: Springer-Lehrbuch ((SLB))

Zusammenfassung

Ausgangspunkt aller Erkenntnisse über die Regeln und über die molekularen Mechanismen der Vererbung sowie über die Umsetzung von erblicher Information in Stoffwechselfunktionen ist die Variabilität von Merkmalen. Diese Variabilität erst gestattet es uns, bestimmte biologische Eigenschaften und Prozesse auf ihre Ursachen hin zu untersuchen.

An Malaria erkranktes Mädchen an der thailändischen Grenze. Mutationen können Resistenz verleihen. (Photo: P. Charlesworth, JB Pictures, New York)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Auerbach C (1962) Mutation, an introduction to research on mutagenesis. Oliver und Boyd, Edinburgh

    Google Scholar 

  • Nickoloff Ja, Hoekstra MF (eds) (1998) DNA damage and repair, vol 1 and 2, Humana Press, Totowa, NJ

    Google Scholar 

  • Vries H de (1901) Die Mutationstheorie. Bd I. Veit, Leipzig

    Google Scholar 

  • Ames BW (1979) Identifying environmental chemicals causing mutations and cancer. Science 204: 587–593

    Article  PubMed  CAS  Google Scholar 

  • Ames BW, Durston WE, Yamasaki E, Lee FD (1973) Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci USA 70: 2381–2385

    Article  Google Scholar 

  • Bonhoeffer F, Schaller H (1965) A method for selective enrichment of mutants based on the high ultraviolett sensitivity of DNA containing 5-bromouracil. Biochem Biophys Res Comm 20: 93–97

    PubMed  CAS  Google Scholar 

  • Bossi L, Smith D (1981) Suppressor sufj: a novel type of tRNA mutant that induces translational frameshifting. Proc Natl Acad Sci USA 81: 6105–6109

    Article  Google Scholar 

  • Brody S, Yanofsky C (1963) Suppressor gene alteration of protein primary structure. Proc Natl Acad Sci USA 50: 9–16

    Article  PubMed  CAS  Google Scholar 

  • Carrano AV, Thompson LH, Lindl PA, Minkler JL (1978) Sister chromatid exchanges as an indication of muta-genesis. Nature 271, 551–553

    Article  PubMed  CAS  Google Scholar 

  • Cleaver JE, Kraemer KH (1989) Xeroderma pigmentosum. In: Scriver CA, Beaudet AL, Sly WS, Vale D (eds) The metabolic basis of inherited disease, 6th edn. McGraw-Hill, New York, pp 2949–2971

    Google Scholar 

  • Dustin P (1978) Microtubules. Springer, Berlin Heidelberg New York Tokyo

    Book  Google Scholar 

  • Friedberg EC (1992) Xeroderma pigmentosum, Cockayne’s syndrome, helicases, and DNA repair: What’s the relationship. Cell 71: 887–889

    Article  PubMed  CAS  Google Scholar 

  • Fu Y-H, Pizzuti A, Fenwick RG Jr et al. (1992) An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255: 1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Grosveld F, van Assendelft GB, Greaves DR, Kollias G (1987) Position-independent, high-level expression of the human 13-globin genes in transgenic mice. Cell 51: 975–985

    Article  PubMed  CAS  Google Scholar 

  • Heidelberger C (1975) Molecular mechanisms of mutation. Ann Rev Biochem 44: 79–121

    Article  PubMed  CAS  Google Scholar 

  • Hook EB, Lindsjö A (1978) Am J Hum Genet 30: 19

    PubMed  CAS  Google Scholar 

  • Johnston LH (1979) Nuclear mutations in Saccharomyces cerevisiae which increase the spontaneous mutation frequency in mitochondrial DNA. Mol Gen Genet 170: 327–331

    Article  PubMed  CAS  Google Scholar 

  • Kiss A (1966) Neue Richtung in der Triticale-Züchtung. Z Pflanzenzüchtung 55: 309–329

    Google Scholar 

  • Kremer EJ, Pritchard M, Lynch M et al. (1991) Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG),,. Science 252: 1711–1714

    Article  PubMed  CAS  Google Scholar 

  • La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular dystrophy. Nature 352: 77–79

    Article  PubMed  Google Scholar 

  • de Laat WL, Jaspers NGJ, Hoeijmakers JHJ (1999) Molecular mechanisms of nucleotide excision repair. Genes und Development 13: 768–785

    Article  Google Scholar 

  • Luria SE, Delbrück M (1943) Mutations in bacteria from virus sensitivity to virus resistance. Genetics 28: 491–502

    PubMed  CAS  Google Scholar 

  • McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37: 107–116

    Google Scholar 

  • Morris R, Sears ER (1967) In: Quisenberry KS, Reitz LP (eds) Wheat and wheat improvement. Am Soc Agron, Madison, Wisconsin, pp 19

    Google Scholar 

  • Mounkes LC, Jones RS, Liang BC, Gelbart W, Fuller MT (1992) A Drosophila model for Xeroderma pigmentosum and Cockayne’s syndrome: haywire encodes the fly homolog of ERCC3, a human excision repair gene. Cell 71: 925–937

    Article  PubMed  CAS  Google Scholar 

  • Nussbaum RL, Ledbetter DH (1986) Fragile X syndrome: A unique mutation in man. Ann Rev Genet 20: 109–145

    Google Scholar 

  • Rabbits TH (1991) Translocations, master genes, and differences between the origins of acute and chronic leukemias. Cell 67: 641–644

    Article  Google Scholar 

  • Rathmell WK, Chu G (1998) Mechanisms for DNA double-stranded break repair in eukaryotes In: Nickoloff JA, Hoekstra MF (eds) DNA damage and repair, vol 2: DNA Repair in Higher Eukaryotes, Humana Press, Totowa, NJ, pp 299–316

    Google Scholar 

  • Richards RI, Sutherland GR (1992) Dynamic mutations: A new class of mutations causing human disease. Cell 70: 709–712

    Google Scholar 

  • Rossi HH, Kellerer AM (1974) Radiat Res 58: 131–140 Sears ER (1948) The cytology and genetics of wheats and their relatives. Adv Genetics 2, 240–270

    Google Scholar 

  • Sears ER (1959) In: Kappert H, Rudorf W (ed) Handbuch der Pflanzenzüchtung, Bd 2. Parey, Berlin

    Google Scholar 

  • Troelstra C, van Gool A, de Wit J, Vermeulen W, Bootsma D, Hoejimakers JHJ (1992) ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne’s syndrome and preferential repair of active genes. Cell 71: 939–953

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Li W-H, Sharp PM (1987) Rates of nucleotide substitutions vary greatly among plant mitochondrial, chloroplast, and nuclear DNA. Proc Natl Acad Sci USA 84: 9054–9058

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Sharp PM, Li W-H (1989) Rates of synonymous substitution in plant nuclear genes. J Mol Evol 29: 208–211

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hennig, W. (2002). Veränderungen von Genen: Mutationen. In: Genetik. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21953-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21953-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21954-6

  • Online ISBN: 978-3-662-21953-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics