The Adrenal Medulla in MEN 2

Part of the Medical Intelligence Unit book series (MIU.LANDES)


The multiple endocrine neoplasia type 2 (MEN 2) syndromes are a fascinating group of proliferative disorders that classically involve both the adrenal medulla and thyroid C-cells. The 1961 report by Sipple,1 then a surgery resident, of the more than coincidental association between pheochromocytoma and thyroid carcinoma focused attention on the entity now known as MEN 2A. Subsequent studies by Williams2 established that the thyroid carcinomas were of the medullary type. Several papers shortly thereafter led to the recognition of MEN 2B and apparent variants of the two classic syndromes were subsequently described, as recently reviewed.3 These variants include familial pheochromocytoma without medullary thyroid carcinoma, and familial medullary thyroid carcinoma without pheochromocytoma.


Medullary Thyroid Carcinoma Chromaffin Cell Multiple Endocrine Neoplasia Type Adrenal Medulla Familial Medullary Thyroid Carcinoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sipple JH. The association of pheochromocytoma with carcinoma of the thyroid gland. Am J Med 1961; 31: 163–6.CrossRefGoogle Scholar
  2. 2.
    Williams ED. Histogenesis of medullary carcinoma of the thyroid. J Clin Pathol 1966; 19: 114–8.PubMedCrossRefGoogle Scholar
  3. 3.
    DeLellis RA. Multiple endocrine neoplasia syndromes revisited. Clinical, morphologic and molecular features. Lab Invest 72: 1–12.Google Scholar
  4. 4.
    Page DL, DeLellis RA, Hough AJ Jr. Tumors of the adrenal. In: Atlas of Tumor Pathology, 2nd ed. Fasc 23, Armed Forces Institute of Pathology, Washington, DC: 1986.Google Scholar
  5. 5.
    Manger WM, Gifford RW. Pheochromocytoma. New York: Springer-Verlag 1977: 44–8.Google Scholar
  6. 6.
    Beard CM, Sheps SG, Kurland LT et al. Occurrence of pheochromocytoma in Rochester, Minnesota, 1950–1979. Mayo Clinic Proceedings 1983; 802–4.Google Scholar
  7. 7.
    Evans DB, Lee JE, Merrell RC et al. Adrenal medullary disease in multiple endocrine neoplasia type 2. Appropriate management. Endocrinol Metabol Clin North Am 1994; 23: 167–76.Google Scholar
  8. 8.
    Gagel RF, Tashjian AH Jr, Cummings T et al. Impact of prospective screening for multiple endocrine neoplasia type 2. 1988; N Engl J Med 318: 478–84.Google Scholar
  9. 9.
    DeLellis RA, Wolfe HJ, Gagel RF et al. Adrenal medullary hyperplasia. Am J Pathol 1976; 83: 177–96.PubMedGoogle Scholar
  10. 10.
    Tischler AS. Paraganglia. In: Sternberg S, ed. Histology for Pathologists. New York: Raven Press, 1992: 363–97.Google Scholar
  11. 11.
    Karsner HT. Tumors of the Adrenal. In: Atlas of Tumor Pathology, Vol Fasc 29. Armed Forces Institute of Pathology, Washington, DC, 1950.Google Scholar
  12. 12.
    Lips CMJ, Minder WH, Leo JR et al. Evidence of multicentric origin of the multiple endocrine neoplasia syndrome type 2A (Sipple’s syndrome) in a large family in the Netherlands. Am J Med 1978; 64: 569–78.PubMedCrossRefGoogle Scholar
  13. 13.
    Marks AD, Channick BJ. Extra-adrenal pheochromocytoma and medullary thyroid carcinoma with pheochromocytoma. Arch Int Med 1974; 134: 1106–9.CrossRefGoogle Scholar
  14. 14.
    Kawai K, Kimura S, Miyamoto J et al. A case of multiple extra-adrenal pheochromocytomas. Endocrinol Jpn 1979; 26: 693–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Karasov RS, Sheps SG, Carney AJ. Paragangliomatosis with numerous catecholamine-producing tumors. Mayo Clinic Proceedings 1982; 57: 590–5.PubMedGoogle Scholar
  16. 16.
    Gardner E, Papi L, Easton DF et al. Genetic linkage studies map the multiple endocrine neoplasia type 2 loci to a small interval on chromosome 10811.2. Hum Mol Genetics 1993; 2: 241–6.CrossRefGoogle Scholar
  17. 17.
    Lairmore TC, Dou S, Howe JR et al. A 1.5 megabase yeast artificial chromosome contig from human chromosome 10811.2 connecting three genetic loci (RET, D10S94 and D10S102) closely linked to the MEN 2A locus. Proc Natl Acad Sci USA 1993; 90: 492–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Mole SE, Mulligan LM, Healey CS et al. Localization of the gene for multiple endocrine neoplasia type 2A to a 480kb region in chromosome band 10811.2. Hum Mol Genetics 1993; 2: 247–52.CrossRefGoogle Scholar
  19. 19.
    Nagao M, Ishizaka Y, Nakagawara A et al. Expression of ret proto-oncogene in human neuroblastomas. Jap J Cancer Res 1990; 81: 309–12.CrossRefGoogle Scholar
  20. 20.
    Santoro M, Rosati R, Grieco M et al. The ret proto-oncogene is consistently expressed in human pheochromocytomas and thyroid medullary carcinomas. Oncogene 1990; 5: 1595–8.PubMedGoogle Scholar
  21. 21.
    Miya A, Yamamoto M, Morimoto H et al. Expression of the ret proto-oncogene in human medullary thyroid carcinomas and pheochromocytomas of MEN 2A. Henry Ford Hosp Med J 1992; 40: 215–19.PubMedGoogle Scholar
  22. 22.
    Pachnis V, Mankoo B, Costantini F. Expression of the c-ret proto-oncogene during mouse embryogenesis. Development 1993; 119: 1005–17.PubMedGoogle Scholar
  23. 23.
    Komminoth P, Kunz E, Hiört O et al. Detection of ret proto-oncogene point mutations in paraffin-embedded pheochromocytoma specimens by non-radioactive single-strand confirmation polymorphism analysis and direct sequencing. Am J Pathol 1994; 144: 922–29.Google Scholar
  24. 24.
    Lindor NM, Honchel R, Khsla S et al. Mutations in the ret proto-oncogene in sporadic pheochromocytomas. J Clin Endocrin Metab 1995; 80: 627–29.CrossRefGoogle Scholar
  25. 25.
    Santoro M, Carlomagno F, Romano A et al. Activation of ret as a dominant transforming gene by germline mutations of MEN 2A and MEN 2B. Science 1995; 267: 381–383.PubMedCrossRefGoogle Scholar
  26. 26.
    Carney JA, Sizemore GW, Tyce GM. Bilateral adrenal medullary hyperplasia in multiple endocrine neoplasia, type 2. Mayo Clinic Proceedings 1975; 50: 3.PubMedGoogle Scholar
  27. 27.
    Neville AM. The adrenal medulla. In: Symington T, ed. Functional Pathology of the Human Adrenal Gland. 1969.Google Scholar
  28. 28.
    Rudy FR, Bates RD, Cimorelli AJ et al. Adrenal medullary hyperplasia: A clinicopathologic study of four cases. Human Pathol 1980; 26: 131–34.Google Scholar
  29. 29.
    DeLellis RA. Does the evaluation of proliferative activity predict malignancy or prognosis in endocrine tumors? Human Pathol 1995; 26: 131–34.CrossRefGoogle Scholar
  30. 30.
    Mendelsohn G, Baylin SB, Eggleston JC. Relationship of metastatic medullary thyroid carcinoma to carcinoma content of pheochromocytomas: An immunohistochemical study. Cancer 1980; 45: 498–502.PubMedCrossRefGoogle Scholar
  31. 31.
    O’Connor DT, Frigon RP, Deftos W. Immunoreactive calcitonin in catecholamine storage vesicles of human pheochromocytoma. J Clin Endocrin Metab 1983; 56: 582–85.CrossRefGoogle Scholar
  32. 32.
    Baylin SB, Gann DS, Shu SH. Clonal origin of inherited medullary thyroid carcinoma and pheochromocytoma. Science 1976; 193: 321–23.PubMedCrossRefGoogle Scholar
  33. 33.
    Lloyd RV, Sisson K, Shapiro B. Histochemical localization of epinephrine, norepinephrine, catecholamine-synthesizing enzymes and chromogranin in neuroendocrine cells and tumors. Am J Pathol 1986; 125; 45–54.PubMedGoogle Scholar
  34. 34.
    Tischler AS. Triple immunohistochemical staining for bromodeoxyuridine and catecholamine biosynthetic enzymes using microwave antigen retrieval. J Histochem Cytochem 1995; 43: 1–4.PubMedCrossRefGoogle Scholar
  35. 35.
    Tischler AS, DeLellis RA. The rat adrenal medulla. II. Proliferative lesions. J Amer Coll Toxicol 1988; 7: 23–44.CrossRefGoogle Scholar
  36. 36.
    Tischler AS, Coupland RE. Age-related changes in the structure and function of the rat adrenal medulla. In: Mohr U, Dungworth DL, Capen CL, eds. Pathobiology of the Aging Rat. Vol. 2. Washington DC. ILSI Press, 1994: 245–68.Google Scholar
  37. 37.
    Tischler AS, Ruzicka LA, Donahue SR et al. Chromaffin cell proliferation in the adult adrenal medulla. Int J Devel Neurosci 1989; 7: 439–448.CrossRefGoogle Scholar
  38. 38.
    Tischler AS, McClain RM, Childers H et al. Neurogenic signals regulate chromaffin cell proliferation and mediate the mitogenic effect of reserpine in the adult rat adrenal medulla. Lab Invest 1991; 65: 374–76.PubMedGoogle Scholar
  39. 39.
    Sietzen M, Schober M, Fischer-Colbrie R et al. Rat adrenal medulla. Levels of chromogranins, enkephalins, dopamine beta-hydroxylase and the amine transporter are changed by nervous activity and hypophysectomy. Neuroscience 1987; 22: 131–39.PubMedCrossRefGoogle Scholar
  40. 40.
    Graham DG. On the origin and significance of neuromalanin. Arch Pathol Lab Med 1979; 103: 359–62.PubMedGoogle Scholar
  41. 41.
    Baez S, Segura-Aguilar J. Formation of reactive oxygen species during one-electron reduction of noradrenochrome catalyzed by NADPH-cytochrome P-450 reductase. Redox Report 1994; 1: 65–70.Google Scholar
  42. 42.
    Tischler AS, Riseberg JC, Cherington V. Multiple mitogenic signaling pathways in chromaffin cells: A model for cell cycle regulation in the nervous system. Neurosci Lett 1994; 168: 181–84.PubMedCrossRefGoogle Scholar
  43. 43.
    Mahanthappa NK, Gage FG, Patterson PH. Adrenal chromaffin cells as multipotential neurons for autografts. Prog Brain Res 1990; 82: 33–39.PubMedCrossRefGoogle Scholar
  44. 44.
    Tischler AS, Riseberg JC. Different responses to mitogenic signals by adult rat and human chromaffin cells in vitro. Endocrine Pathol 1993; 4: 15–19.CrossRefGoogle Scholar
  45. 45.
    Tischler AS, Sheldon W. The adrenal medulla in the aging mouse. In: ILSI Monographs on Pathobiology of Aging Animals. The Aging Mouse. Washington DC: ILSI Press, in press.Google Scholar
  46. 46.
    Schulz N, Propst F, Rosenberg MP et al. Pheochromocytomas and C-cell thyroid neoplasms in transgenic c-mos mice: A model for the human multiple endocrine neoplasia type 2 syndrome. Cancer Res 1992; 52: 450–55.PubMedGoogle Scholar
  47. 47.
    Jacks T, Shih TS, Schmitt EM et al. Tumorigenic and developmental consequences of a targeted Nfl mutation in the mouse. Nature Genetics 1994; 7: 353–61.PubMedCrossRefGoogle Scholar
  48. 48.
    Williams BO, Schmitt EM, Remington L et al. Extensive contribution of Rb-deficient cells to adult chimeric mice with limited histopathological consequences. EMBO Journal 1994; 13: 4251–59.PubMedGoogle Scholar
  49. 49.
    Tischler AS, Shih TS, Williams BO et al. Characterization of pheochromocytomas in a mouse strain with a targeted disruptive mutation of neurofibromatosis gene Nfl. Endocrine Pathol 1996; 6: 323–35.CrossRefGoogle Scholar
  50. 50.
    Gutmann DH, Cole JL, Stone WI et al. Loss of neurofibromin in adrenal gland tumors from patients with neurofibromatosis type 1. Genes, Chromosomes, Cancer 1994; 10: 55–58.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

There are no affiliations available

Personalised recommendations