Skip to main content

Characterization and Regulation of Gap Junction Channels in Cultured Astrocytes

  • Chapter
Gap Junctions in the Nervous System

Part of the book series: Neuroscience Intelligence Unit ((NIU.LANDES))

Abstract

For decades neurons have been considered as the unique active constituents of the brain while glial cells were viewed solely as bystand-ers. However, now there is increasing evidence to support that glial cells are more than simple supporting cells since they appear to nourish, protect and interact with neurons.1–3 In particular the star-shaped cells called astrocytes constitute a major class of brain glial cells which possesses all the tools to receive, integrate and transmit signals to neurons. In the last few years, several reviews have focused on ionic channels in glia,4–7 but none of these have taken into consideration the channels forming gap junctions. This omission is rather surprising since astrocytes, in culture systems as well as in vivo, are presumed to be the most widely coupled cell population in the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pope A. Neuroglia: quantitative aspect. In: Schoffeniels E, Franck G, Hertz L, Tower DB, eds. Dynamic Properties of Glial Cells. Oxford: Pergamon, 1978: 13–20.

    Google Scholar 

  2. Kimelberg HK, Norenberg MD. Astrocytes. Scientific American 1989, 260: 44–52.

    Article  Google Scholar 

  3. Travis J. Glia: the brain’s other cells. Science 1994, 266: 970–972.

    Article  PubMed  CAS  Google Scholar 

  4. Barres BA, Chun LLY, Corey DP. Ion channels in vertebrate glia. Ann Rev Neurosci 1990, 13: 441–474.

    Article  PubMed  CAS  Google Scholar 

  5. Barres BA. New roles for glia. J Neurosci 1991, 11: 3685–3694.

    PubMed  CAS  Google Scholar 

  6. Duffy S, MacVicar BA. Voltage-dependent ionic channels in astrocytes. In: Murphy S ed. Astrocytes: Pharmacology and Function. San Diego: Academic Press, 1993: 137–169.

    Google Scholar 

  7. Sontheimer H. Voltage-dependent ion channels in glial cells. Glia 1994, 11: 156–172.

    Article  PubMed  CAS  Google Scholar 

  8. Ranck JB. Specific impedence of rabbit cerebral cortex. Exp Neurol 1963, 7: 144–174.

    Article  PubMed  Google Scholar 

  9. Oksche A. Circumventricular structures and pituitary functions. In Scow RO, ed. Endocrimology. Amsterdam: Excerpta Medica, 1973: 73–79.

    Google Scholar 

  10. Palay SL, Chan-Palay V. General morphology of neurons and neuroglia. In: Brookhart JM, Mountcastle VB, eds. Handbook of Physiology The Nervous System, Vol. 1. Bethesda: American Physiological Society, 1977: 5–37.

    Google Scholar 

  11. Black JA, Waxman SG. The perinodal astrocyte. Glia 1988, 1: 169–183.

    Article  PubMed  CAS  Google Scholar 

  12. Risau W, Wolburg H. Development of the blood-brain barrier. Trends Neurosci 1990, 13: 174–178.

    Article  PubMed  CAS  Google Scholar 

  13. Massa PT, Mugnaini E. Cell junctions and intramembrane particles of astrocytes and oligodendrocytes a freeze-fracture study. Neuroscience 1982, 7: 523–538.

    Article  PubMed  CAS  Google Scholar 

  14. Massa PT, Mugnaini E. Cell-cell junctional interactions and characteristic plasma membrane fractures of cultured rat glial cells. Neuroscience 1985, 14: 695–709.

    Article  PubMed  CAS  Google Scholar 

  15. Mugnaini E. Cell junctions of astrocytes, ependymal and related cells in the mammalian central nervous system, with emphasis on the hypothesis of a generalized functional syncytium of supporting cells. In: Fedoroff S, Vernadakis A, eds. Astrocytes. New York: Academic Press, 1986: 329–371.

    Google Scholar 

  16. Peters A. Plasma membrane contacts in the central nervous system. J Anat (London) 1962, 96: 237–248.

    CAS  Google Scholar 

  17. Ransom BR, Carlini WG. Electrophysiological properties of astrocytes. In: Fedorff S, Vernadakis A eds. Astrocytes. New York: Academic Press, 1986: 1–49.

    Google Scholar 

  18. Dermietzel R, Spray DC. Gap junctions in the brain: where, what type, how many and why? Trends Neurosci 1993, 16: 186–192.

    Article  PubMed  CAS  Google Scholar 

  19. Gonatas N, Hiryama M, Stieber A, Silberberg. The ultrastructure of isolated rat oligodendroglial cultures. J Neurocytol 1982, 11: 997–1008.

    Article  PubMed  CAS  Google Scholar 

  20. Yamamoto T, Ochalski A, Hertzberg EL, Nagy JI. On the organization of astrocytes gap junctions in rat brain as suggested by LM and EM immunohistochemistry of connexin43 expression. J Comp Neurol 1990, 302: 853–883.

    Article  PubMed  CAS  Google Scholar 

  21. Dermietzel R, Traub O, Hwang TK, Beyer E, Bennett MVL, Spray DC. Differential expression of three gap junction proteins in developing and mature brain tissues. Proc Natl Acad Sci USA 1989, 87: 1328–1331.

    Google Scholar 

  22. Giaume C, Venance L. Gap junctions in brain glial cells and development. Persp Develop Neurobiol 1995, 2: 335–345.

    CAS  Google Scholar 

  23. Connors BW, Benardo LS, Prince DA. Carbon dioxide sensitivity of dye coupling among glia and neurons of the neocortex. J Neurosci 1984, 4: 1324–1330.

    PubMed  CAS  Google Scholar 

  24. Binmöller F-J, Müller C. Postnatal development of dye-coupling among astrocytes in rat visual cortex. Glia 1992, 6: 127–137.

    Article  PubMed  Google Scholar 

  25. Konietzko U, Müller C. Astrocytic dye coupling in rat hippocampus: topography, developmental onset, and modulation by protein kinase C. Hippocampus 1994, 4: 297–306.

    Article  PubMed  CAS  Google Scholar 

  26. Butt AM, Ransom BR. Visualization of oligodendrocytes and astrocytes in the intact rat optic nerve by intracellular injection of Lucifer yellow and horseradish peroxidase. Glia 1989, 2: 470–475.

    Article  PubMed  CAS  Google Scholar 

  27. Kettenmann H, Orkand RK, Schachner M. Coupling among identified cells in mammalian nervous system cultures. J Neurosci 1983, 3: 506–516.

    PubMed  CAS  Google Scholar 

  28. Ransom BR, Kettenmann H. Electrical coupling, without dye coupling, between mammalian astrocytes and oligodendrocytes in cell culture. Glia 1990, 3: 258–266.

    Article  PubMed  CAS  Google Scholar 

  29. Venance L, Cordier J, Monge M, Zalc B, Glowinski J, Giaume C. Homotypic and heterotypic coupling mediated by gap junctions during glial cell differentiation in vitro. Eur J Neurosci 1995, 7: 451–461.

    Article  PubMed  CAS  Google Scholar 

  30. Robinson SR, Hampson EC, Munro MN, Vaney DI. Unidirectional coupling of gap junctions between neuroglia. Science 1993, 262: 1072–1074.

    Article  PubMed  CAS  Google Scholar 

  31. Kadle R, Cohan CS, Nicholson BJ. Cx43 mediated neuronal-neuronal and neuronal-glial coupling. International Meeting on Gap Junctions, Asilomar 1991:121 (abstract).

    Google Scholar 

  32. Nedergaard M. Direct signaling from as-trocytes to neurons in cultures of mamma-lian brain cells. Science 1994, 263: 1768–1771. Schneider SP. Demonstration of artifactual coupling between spinal neurons and glial cells during intracellular recording with micropipette electrodes. Brain Res 1992, 585: 343–348.

    Article  Google Scholar 

  33. Smith S. Neuromodulatory astrocytes. Cur Biol 1994, 4: 807–810.

    Article  CAS  Google Scholar 

  34. Attwell D. Glia and neurons in dialogue. Nature 1994, 369: 707–708.

    Article  PubMed  CAS  Google Scholar 

  35. DeGeorge JJ, Morell P, MacCarthy KD, Lapetina EG. Adrenergic and cholinergic stimulation of arachidonate and phosphatidate metabolism in cultured astroglial cells. Neurochem Res 1986, 11: 1061–1071.

    Article  PubMed  CAS  Google Scholar 

  36. Murphy S, Pearce B. Functional receptors for neurotransmitters on astroglial cells. Neuroscience 1987, 22: 381–394.

    Article  PubMed  CAS  Google Scholar 

  37. Hösli E, Hösli L. Receptors for neurotransmitters on astrocytes in the mammalian central nervous system. Prog Neurobiol 1993, 40: 477–506.

    Article  PubMed  Google Scholar 

  38. Finkbeiner SM. Glial calcium. Glia 1994, 9: 83–104.

    Article  Google Scholar 

  39. Wilkin GP, Marriott DR, Cholewinski AJ. Astrocyte heterogeneity. Trends Neurosci 1990, 13: 43–46.

    Article  PubMed  CAS  Google Scholar 

  40. McCarthy KD, Slam AK. Pharmacological-distinct subsets of astroglia can be identified by their calcium response to neuro-ligands. Neuroscience 1991, 41: 325–333.

    Article  PubMed  CAS  Google Scholar 

  41. Liscovitch M. Crosstalk among multiple signal-activated phospholipases. Trends Biol Sci 1992, 17: 393–399.

    Article  CAS  Google Scholar 

  42. Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG. Glutamate-mediated astrocyte-neuron signalling. Nature 1994, 369: 744–747.

    Article  PubMed  CAS  Google Scholar 

  43. Piomelli D. Eicosanoids in synaptic transmission. Critical Rev Neurobiol 1994, 8: 65–83.

    CAS  Google Scholar 

  44. Murphy S, Simmons ML, Agullo, Garcia A, Feinstein DL, Galea E, Reis DJ, MincGolomb D, Schwartz JP. Synthesis of nitric oxide in CNS glial cells. Trends Neurosci 1993, 16: 323–328.

    Article  PubMed  CAS  Google Scholar 

  45. Barbour B, Szatkowski M, Ingledew N, Attwell D. Arachidonic acid induces a prolonged inhibition of glutamate uptake into glial cells. Nature 1989, 342: 918–920.

    Article  PubMed  CAS  Google Scholar 

  46. Kimelberg HK, Jalonen T, Walz W. Regulation of the brain microenvironment: transmitters and ions. In: Murphy S, ed. Astro-cytes: Pharmacology and Function. San Diego: Academic Press, 1993: 193–228.

    Google Scholar 

  47. Smith SJ. Do astrocytes process neural information? In Yu ACH, Hertz L, Norenberg MD, Sykovà E, Waxman SG, eds. Progress in Brain Research, Vol. 94. 1992: 119–136.

    Google Scholar 

  48. Dermietzel R, Hertzberg H, Kessler JA, Spray DC. Gap junction between cultured astrocytes: immunocytochemical, molecular, and electrophysiological analysis. J Neurosci 1991, 11: 1421–1432.

    PubMed  CAS  Google Scholar 

  49. Giaume C, Fromaget C, El Aoumari A, Cordier J, Glowinski J, Gros D. Gap junctions in cultured astrocytes: single-channel currents and characterization of channel-forming protein. Neuron 1991, 6: 133–143.

    Article  PubMed  CAS  Google Scholar 

  50. Naus CCG, Belliveau DJ, Bechberger JF. Regional differences in connexin32 and connexin43 in the rat brain. Neurosci Lett 1990, 111: 297–302.

    Article  PubMed  CAS  Google Scholar 

  51. Matsumoto A, Tamusa A, Urano A, Hyodo S. Cellular localization of gap junction mRNA in the neonatal rat brain. Neurosci Lett 1991, 124: 225–228.

    Article  PubMed  CAS  Google Scholar 

  52. Micevytch PE, Abelson L. Distribution of mRNAs coding for liver and heart gap junction proteins in the rat central nervous system. J Comp Neurol 1991, 305: 96–118.

    Article  Google Scholar 

  53. Belliveau DJ, Kidder GM, Naus CCG. Expression of gap junction genes during postnatal neural development. Dev Genet 1991, 12: 308–317.

    Article  PubMed  CAS  Google Scholar 

  54. White TW, Paul DL, Goodenough DA, Bruzzone R. Functional analysis of selective interactions among rodent connexins. Mol Biol Cell 1995, 6: 459–470.

    PubMed  CAS  Google Scholar 

  55. Elfgang C, Eckert R, Lichtenberg-Fraté H, Butterweck A, Traub O, Klein RA, Hülser DF, Willecke K. Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J Cell Biol 1995, 129: 805–817.

    Article  PubMed  CAS  Google Scholar 

  56. Neyton J, Trautmann A. Single-channel currents of an intercellular junction. Nature 1985, 317: 331–335.

    Article  PubMed  CAS  Google Scholar 

  57. Rook MB, Jongsma HJ, van Ginneken. Properties of single gap junctional channels between isolated neonatal rat heart cells. Am J Physiol 1988, 255: H770 - H782.

    PubMed  CAS  Google Scholar 

  58. Burt J, Spray DC. Single-channel events and gating behavior of the cardiac gap junction channel. Proc Natl Acad Sci USA 1998, 85: 3431–3434.

    Article  Google Scholar 

  59. Fishman GI, Spray DC, Leinwand LA. Molecular characterization and functional expression of the human cardiac gap junction channel. J Cell Biol 1990, 111: 589–598.

    Article  PubMed  CAS  Google Scholar 

  60. Bennett MVL, Barrio LC, Bargiello TA, Spray DC, Hertzberg EL, Saez JC. Gap junctions: new tools, new answers, new questions. Neuron 1991, 6: 305–320.

    Article  PubMed  CAS  Google Scholar 

  61. Saez JC, Berthoud VM, Moreno AP, Spray DC. Gap Junctions: Multiplicity of controls in differentiated and undifferentiated cells and possible functional implications. In: Shenolikar S and Nairn AC, eds. Advances in Second Messengers and Phosphoprotein Research, Vol. 27. New York, Raven Press 1993: 163–198.

    Google Scholar 

  62. Lee SH, Kim WT, Cornell-Bell AH, Sontheimer H. Astrocytes exhibit regional specificity in gap-junction coupling. Glia 1994, 11: 315–325.

    Article  PubMed  CAS  Google Scholar 

  63. Jongsma HJ, Rook M. Morphology and electrophysiology of cardiac gap junction channels. In: Zipes DP, Jalife J, eds. Cardiac Physiology: From Cell to Bedside. 2nd ed. Philadelphia: WB Saunders Company 1995: 115–126.

    Google Scholar 

  64. Davidson JS, Baumgarten IM, Harley EH. Reversible inhibition of intercellular junctional communication by glycyrrhetinic acid. Biochem Biophys Res Corn 1986, 134: 29–36.

    Article  CAS  Google Scholar 

  65. Venance L, Giaume C. 18-and-glycyrrhetinic acid inhibits junctional permeability in cultured astrocytes. 1995 Gap Junction Conference, Les Embiez, (abstract).

    Google Scholar 

  66. Goldberg GS, Bechberger JF, Naus CCG. A preloading method of evaluating gap junctional communication by fluorescent dye transfer. Biotechnologies 1995, 18: 490–496.

    CAS  Google Scholar 

  67. Enkvist MOK, McCarthy KD. Astroglial gap junction communication is increased by treatment with either galutamate or high K’ concentration. J Neurochem 1994, 62: 489–495.

    Article  PubMed  CAS  Google Scholar 

  68. Barrio LC, Handler A, Bennett MVL. Inside-outside and transjunctional voltage dependence of rat connexin43 channels expressed in pairs of Xenopus oocytes. Biophys J 1991, 64: A191 (abstract).

    Google Scholar 

  69. White TW, Bruzzone R, Wolfram S, Paul DL, Goodenough DA. Selective interactions among the multiple expressed in the vertebrate lens: the second extracellular domain is a determinant of compatibility between connexins. J Cell Biol 1994, 125: 879–892.

    Article  PubMed  CAS  Google Scholar 

  70. Giaume C, Marin P, Cordier J, Glowinski J, Prémont J. Adrenergic regulation of intercellular communication between cultured striatal astrocytes from the mouse. Proc Natl Acad Sci USA 1991, 88: 5577–5581.

    Article  PubMed  CAS  Google Scholar 

  71. Enkvist MOK, McCarthy KD. Activation of protein kinase C blocks astroglial gap junction communication and inhibit the spread of calcium waves. J Neurochem 1992, 59: 519–526.

    Article  PubMed  CAS  Google Scholar 

  72. Giaume C. Noradrenergic control of gap junction permeability in cultured striatal astrocytes. In: Briley M, Marien M, eds. Noradrenergic Mechanisms in Parkingson’s Disease. Boca Raton, CRC Press 1994: 205–223.

    Google Scholar 

  73. Müller T, Kettenmann H. Physiology of Bergmann glial cells. Int Rev Neurosci 1995, 38: 341–359.

    Article  Google Scholar 

  74. MacCumber MW, Ross CA, Snyder SH. Endothelin in the brain: receptors, mito-genesis, and biosynthesis in glial cells. Proc Natl Acad Sci USA 1990, 87: 2359–2363.

    Article  PubMed  CAS  Google Scholar 

  75. Marsault, Vigne P, Breittmayer JP, Frelin C. Astrocytes are target cells for endothelins and sarafotoxin. J Neurochem 1990, 54: 2142–2144.

    Google Scholar 

  76. Marin P, Delumeau JC, Durieu-Trautmann 0, Le Nguyen D, Prémont J, Strosberg AD, Couraud PO. Are several G proteins involved in the different effects of endothelin1 in mouse striatal astrocytes? Eur J Neurosci 1991, 56: 1270–1275.

    CAS  Google Scholar 

  77. Tencé M, Cordier J, Glowinski J, Prémont J. Endothelin-evoked release of arachidonic acid from mouse astrocytes in primary culture. Eur J Neurosci. 4: 993–999.

    Google Scholar 

  78. Cazaudon S, Parker PJ, Strosberg AD, Couraud PO. Endothelins stimulate tyrosine phosphorylation and activity of p42/mitogen-activated protein kinase in astrocytes. Biochem J 1993, 293: 381–386.

    Google Scholar 

  79. Giaume C, Cordier J, Glowinski J. Endothelins inhibit junctional permeability in cultured mouse astrocytes. Eur J Neurosci 1992, 4: 877–881.

    Article  PubMed  Google Scholar 

  80. Giaume C, Venance L, Cordier J, Glowinski J. Endothelins inhibit intercellular communication in brain glial cells. IV`h International Conference on Endothelin, London 1995, P28 (abstract).

    Google Scholar 

  81. Venance L, Siciliano JC, Yokoyama M, cordier J, Glowinski J, Giaume C. Inhibition of astrocyte gap junctions by endothelins. In: Kanno Y, Kataoka K, Shiba Y, Shibata Y, Shimazu T, eds. Intercellular Communication Through Gap Junctions. Amsterdam: Elsevier, 1995: 245–249.

    Chapter  Google Scholar 

  82. Hossain MZ, Ernst LA, Nagy JI. Utility of intensely fluorescent cyanine dyes (CY3) for assay of gap junctional communication by dye-transfer. Neurosci Lett 1995, 184: 71–74.

    Article  PubMed  CAS  Google Scholar 

  83. Orr N, Yavin E, Lester DS. Identification of two distinct populations of protein kinase C in rat brain membranes. J Neurochem 1992, 58: 461–470.

    Article  PubMed  CAS  Google Scholar 

  84. Seynaeve CM, Kazanietz MG, Blumberg PM, Sausville EA, Worland PJ. Differential inhibition of protein kinase C isozymes by UCN-01, a staurosporine analogue. Mol Pharmacol 1994, 45: 1207–1214.

    PubMed  CAS  Google Scholar 

  85. Giaume C, Randriamampita C, Trautmann A. Arachidonic acid closes gap junction channels in rat lacrimal glands. Pflügers Arch 1989, 413: 273–279.

    Article  PubMed  CAS  Google Scholar 

  86. Burt JM, Massey KD, Minnich BN. Uncoupling of cardiac cells by fatty acids: structure-activity relationship. Am J Physiol 1991, 260: C439 - C448.

    PubMed  CAS  Google Scholar 

  87. Miyachi E, Kato C, Nakaki T. Arachidonic acid blocks gap junctions between retinal horizontal cells. NeuroReport 1994, 5: 485–488.

    Article  PubMed  CAS  Google Scholar 

  88. Lazrak A, Peres A, Giovannardi S, Peracchia C. Ca-mediated and independent effects of arachidonic acid on gap junctions and Ca-independent effects of oleic acid and halothane. Biophys J 1994, 67: 1052–1059.

    Article  PubMed  CAS  Google Scholar 

  89. Venance L Piomelli D, Glowinski J Giaume C. Inhibition by anandamide of gap junctions and intercellular signalling in striatal astrocytes. Nature 1995, 376: 590–594.

    Google Scholar 

  90. Filson AJ, Azarnia R, Beyer EC, Loewenstein WR, Brugge JS. Tyrosine phosphorylation of a gap junction protein correlates with inhibition of cell-to-cell communication. Cell Growth Diff 1990, 1: 661–668.

    PubMed  CAS  Google Scholar 

  91. Kanemitsu MY, Lau AF. Epidermal growth factor stimulates the disruption of gap junctional communication and connexin43 phosphorylation independent of 12–0-tetracanoylphorbol 13-acetate-sensitive protein kinase C: the possible involvement of mitogen-activated protein kinase. Mol Biol Cell 1993, 4: 837–848.

    PubMed  CAS  Google Scholar 

  92. Takens-Kwak BR, Jongsma HJ. Cardiac gap junctions: three distinct single channel conductances and their modulation by phosphorylating treatments. Pflügers Arch 1992, 422: 198–200.

    Article  PubMed  CAS  Google Scholar 

  93. Hii CST, Oh S-Y, Schmidt SA, Clark KJ, Murray AW. Lysophosphatidic acid inhibits gap-junctional communication and stimulates phosphorylation of connexin43 in WB cells: possible involvement of the mitogen-activated protein kinase cascade. Biochem J 1994, 303: 475–479.

    CAS  Google Scholar 

  94. Burt JM, Spray DC. Ionotropic agents modulate gap junctional conductance between cardiac myocytes. Am J Physiol 1988, 254: H1206 - H1210.

    PubMed  CAS  Google Scholar 

  95. De Mello WC. Effect of isoproterenol and 3 -isobutyl-methylxanthine on junctional conductance in heart cell pairs. Biochem Biophys Acta 1989, 1012: 291–298.

    Article  PubMed  Google Scholar 

  96. Loewenstein WR. Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev 1981: 61, 829–913.

    PubMed  CAS  Google Scholar 

  97. Neyton J, Trautmann A. Acetylcholine modulation of the conductance of intercellular junctions between rat lacrimal cells. J Physiol (London) 1986, 377: 283–295.

    CAS  Google Scholar 

  98. Noma A, Stubio N. Dependence of junctional conductance on protons, calcium and magnesium ions in cardiac paired cells of guinea-pig. J Physiol (London) 1987, 382: 193–211.

    CAS  Google Scholar 

  99. Saez JC, Connor JA, Spary DC, Bennett MVI. Hepatocyte gap junctions are permeable to second messenger, inositol 1,4,5trisphosphate, and to calcium ions. Proc Natl Acad Sci USA 1989, 86: 2708–2712.

    Article  PubMed  CAS  Google Scholar 

  100. Lazrak A, Peracchia C. Gap junction gating sensitivity to physiological internal calcium regardless of pH in Novikoff hepatoma cells. Biophys J 1993, 2002–2012.

    Google Scholar 

  101. Venance L, Stella N, Glowinski J, Giaume C. Activation of phospholipase C is a necessary step for propagation of intercellular calcium signaling in cultured astrocytes. 25th Neuroscience Meeting San Diego 1995, (abstract).

    Google Scholar 

  102. Oomagari K, Buisson B, Dumuis A, Bockaert J, Pin JP. Effect of glutamate and ionomycin on the release of arachidonic acid, prostaglandins and HETEs from cultured neurons and astrocytes. Eur J Neurosci 1991, 3: 928–939.

    Article  PubMed  Google Scholar 

  103. Anders JJ. Lactic acid inhibition of junctional intercellular communication in in vitro asytrocytes as measured by fluorescence recovery after laser photobleaching. Glia 1988, 1: 371–379.

    Article  PubMed  CAS  Google Scholar 

  104. Chesler M, Kraig R. Intracellular pH transients of mammalian astrocytes. J Neurosci 1989, 9: 2011–2019.

    PubMed  CAS  Google Scholar 

  105. Orkand RK, Nicholls JG, Kuffler SW. Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 1966, 29: 788–806.

    PubMed  CAS  Google Scholar 

  106. Ballanyi K, Grafe P, Ten Brugencate G. Ion activities and potassium uptake mechanisms of glial cells in guinea-pig olfactory cortex slices. J Physiol (London) 1987, 382: 159–174.

    CAS  Google Scholar 

  107. Newman EA. Regulation of extracellular potassium by glial cells in the retina. TINS 1985, 8: 156–159.

    CAS  Google Scholar 

  108. Mobbs P, Brew H, Attwell D. A quantitative analysis of glial cell coupling in the retina of the axolotl (Ambystonza Mexicanun). Brain Res 1988, 460: 235–245.

    Article  PubMed  CAS  Google Scholar 

  109. Somjen G. Glial cells functions. In: Adelman, ed. Encyclopedia of Neuroscience, Vol 1. Boston: Birkhäuser, 1987: 465–466.

    Google Scholar 

  110. Reichenbach A. Glial K` permeability and CNS K’ clearance by diffusion and spacial buffering. Ann NY Acad Sci 1991, 633: 272–286.

    Article  PubMed  CAS  Google Scholar 

  111. Somjen G. Nervenkitt: notes on the history of the concept of neuroglia. Glia 1988, 1: 2–9.

    Article  PubMed  CAS  Google Scholar 

  112. Magistretti PJ, Pellerin L, Martin JL. Brain energy metabolism: an integrated cellular perspective. In: Bloom FE, Kupfer DJ eds, Psychopharmacology. New York: Raven Press, 1995: 657–670.

    Google Scholar 

  113. Tabernero A, Giaume C, Medina JM. Endothelin-1 regulates glucose utilization in cultured astrocytes by controling intercellular communication through gap junctions. Glia 1996, 16: 187–195.

    Article  PubMed  CAS  Google Scholar 

  114. Loewenstein WR. Junctional intercellular communication and the control of growth. Biochem Biophys Acta Cancer Rev 1978, 560: 1–65.

    Article  Google Scholar 

  115. Zhu D, Caveney S, Kidder GM, Naus CCG. Transfection of C6 glioma cells with connexin43 cDNA: analysis of expression, intercellular coupling and cell proliferation. Proc Natl Acad Sci USA 1991, 88: 1883–1887.

    Article  PubMed  CAS  Google Scholar 

  116. Zhu D, Kidder GM, Caveney S, Naus CCG. Growth retardation in glioma cells cocultured with cells overexpressing a gap junction protein. Proc Natl Acad Sci USA 1992, 89: 10218–10221.

    Article  PubMed  CAS  Google Scholar 

  117. Kimelberg HK, Ransom BR. Physiological and pathological aspect of astrocyte swelling. In: Fedoroff S, Vernadakis A, eds. Astrocytes. New York: Academic Press, 1986: 129–166.

    Google Scholar 

  118. Kimelberg HK, Kettenmann H. Swelling-induced changes in electrophysiological properties of cultured astrocytes and oligodendrocytes. I. Effects on membrane potentials, input impedance and cell-cell coupling. Brain Res 1990, 529: 255–261.

    Article  PubMed  CAS  Google Scholar 

  119. Ngezahayo A, Kolb H-A. Gap junctional permeability is affected by cell volume changes and modulates volume regulation. FEBS Leu 1990, 276: 6–8.

    Article  CAS  Google Scholar 

  120. Bender AS, Neary JT, Norenberg MD. Role of phosphoinositide hydrolysis in astrocyte volume regulation. J Neurochem 1993, 61: 1506–1514.

    Article  PubMed  CAS  Google Scholar 

  121. Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 1990, 247: 470–473.

    Article  PubMed  CAS  Google Scholar 

  122. Finkbeiner SM. Calcium waves in astrocytes-filling the gaps. Neuron 1992, 8: 1101–1108.

    Article  PubMed  CAS  Google Scholar 

  123. Charles AC, Naus CCG, Kidder GM, Dirksen ER, Sanderson MJ. Intercellular calcium signaling via gap junctions in glioma cells. J Cell Biol 1992, 118: 195–201.

    Article  PubMed  CAS  Google Scholar 

  124. Dani JW, Chernjaysky A, Smith SJ. Neu-ronal activity triggers calcium waves in hippocampal astrocytes networks. Neuron 1992, 8: 429–440.

    Article  PubMed  CAS  Google Scholar 

  125. Charles AC. Glia-neuron intercellular calcium signaling. Dev Neurosci 1994, 16: 196–206.

    Article  PubMed  CAS  Google Scholar 

  126. Gerfen CR. The neostriatal mosaic: multiple levels of compartemental organization. Trends Neurosci 1992, 15: 133–139.

    Article  PubMed  CAS  Google Scholar 

  127. Graybiel AM, Aosaki T, Flaherty AW, Kimura M. The basal ganglia and adaptative motor control. Science 1994, 265: 1826–1831.

    Article  PubMed  CAS  Google Scholar 

  128. Steindler DA. Glial boundaries in the developing nervous system. Annu Rev Neurosci 1993, 16: 445–470.

    Article  PubMed  CAS  Google Scholar 

  129. Vukelic JI, Yamamoto T, Hertzberg EL, Nagy JI. Depletion of connexin43-immunoreactivity in astrocytes after kainic acid-induced lesions in the rat brain. Neurosci Lett 1991, 130: 120–124.

    Article  PubMed  CAS  Google Scholar 

  130. Rohlmann A, Laskawi R, Hofer A, Dobo A, Dermietzel R, Wolff J. Neurosci Lett 1993, 154: 206–208.

    Article  PubMed  CAS  Google Scholar 

  131. Hossain MZ, Sawchuk, MA, Murphy LJ, Hertzberg EL. Kainic acid induced alterations in antiboy recognition of connexin43 and loss of astrocytic gap junctions in rat brain. Glia 1994, 10: 250–265.

    Article  PubMed  CAS  Google Scholar 

  132. Dermietzel R, Hofer A, Rohlmann and Müller C. Functional plasticity and cell specific expression of connexins in normal and pathological glial tissues. In: Kanno Y, Kataoka K, Shiba Y, Shibata Y, Shimazu T, eds. Intercellular Communication Through Gap Junctions. Amsterdam: Elsevier, 1995: 235–237.

    Chapter  Google Scholar 

  133. McMillian MK, Thai L, Hong J-S, O’Callaghan JP, Pennypacker KR. Brain injury in a dish: a model for reactive gliosis. Trends Neurosci 1994, 17: 137–141.

    Article  Google Scholar 

  134. Lavialle M, Serviere J. Are the astrocyte gap junctions implicated in the neuronal synchronization in the circadian clock? Neuroscience Meeting, Miami, 1994: 294–17.

    Google Scholar 

  135. a.Serviere J, Lavialle M. Astrocytes in the mammalian circadian clock: putative roles. Prog Brain Res 1996 (in press).

    Google Scholar 

  136. Wenzel J, Lammert G, Meyer U, Krug M. The influence of long-term potentiation on the spatial relationship between astrocyte processes and potentiated synapses in the gyms neuropil of the rat brain. Brain Res 1991, 560: 122–131.

    Article  PubMed  CAS  Google Scholar 

  137. Dermietzel R, Kirchhoff F, Dichtel B, and Kremer M. Application of patch recordings from brain slice preparations for single cell detection of connexin gene transcripts. 1995 Gap Junction Conference, Les Embiez, (abstract).

    Google Scholar 

  138. Fisher G, Kettenmann H. Cultured astrocytes form a syncytium after maturation. Exp Cell Res 1985, 159: 273–279.

    Article  Google Scholar 

  139. Anders JJ, Woolery S. Microbeam laser-injured neurons increase in vitro astrocytic gap junctional communication as measured by fluorescence recovery after laser photo-bleaching. Lasers Surg Med 1992, 12: 51–62.

    Article  PubMed  CAS  Google Scholar 

  140. Glowinski J, Marin P, Tence M, Stella N, Giaume C, Prémont J. Glial receptors and their intervention in astrocyto-astrocytic and astrocyto-neuronal interactions. Glia 1994, 11: 201–208.

    Article  PubMed  CAS  Google Scholar 

  141. Mantz J, Cordier J, Giaume C. Effects of general anesthetics on intercellular communications mediated by gap junctions between astrocytes in primary culture. Anesthesiology 1993, 78: 892–901.

    Article  PubMed  CAS  Google Scholar 

  142. Giaume C, McCarthy KD. Control of gap junctional communication in astrocytic networks. TINS 1996 (in press).

    Google Scholar 

  143. Zheng X, Friedman L, Fan D, Zhang L, Aronica DH, Hall R, Dermietzel R, Zukin S, Bennett MVL. Cx40 mRNA in astrocytes and neurons of rat brain. (1995) Soc Neurosci Abstr 25: 563.

    Google Scholar 

  144. Spray D, Viera D, El-Sabban ME, Gao Y, Bennett MVL, (1995) Gap junction properties in astrocytes from connexin43 (Cx43) knock-out (KO) mice. (1995) Soc Neurosci Abstr 25: 563.

    Google Scholar 

  145. Bechberger JF, Naus CCG, Giaume C, Venance L, Juneja SC, Kidder GM. Functional characterization of astrocytes deficient in connexin43. (1995) Soc Neurosci Abstr 25: 563.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giaume, C., Venance, L. (1996). Characterization and Regulation of Gap Junction Channels in Cultured Astrocytes. In: Gap Junctions in the Nervous System. Neuroscience Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21935-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21935-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21937-9

  • Online ISBN: 978-3-662-21935-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics