Connexin32 and X-Linked-Charcot-Marie-Tooth Disease

  • Suzanne M. Deschênes
  • Linda Jo Bone
  • Kenneth H. Fischbeck
  • Steven S. Scherer
Part of the Neuroscience Intelligence Unit book series (NIU.LANDES)


The discovery that X-linked Charcot-Marie-Tooth disease (CMTX) is caused by mutations in connexin32 (Cx32)1 has united the fields of molecular genetics, neurology, and gap junction biology by demonstrating the importance of Cx32 in myelinating Schwann cells. The lack of overt clinical manifestations in other tissues that express Cx32 suggests the existence of compensatory mechanisms elsewhere that are absent in peripheral nerve. Determining the mechanism by which Cx32 mutations cause the phenotype of CMTX will contribute to the understanding of the function of the myelin sheath and elucidate the role of Cx32 in other tissues.


Schwann Cell Myelin Sheath Cx32 mRNA Peripheral Myelin Protein Myelinating Schwann Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergoffen J, Scherer SS, Wang S et al. Connexin mutations in X-linked CharcotMarie-Tooth disease. Science 1993a; 262: 2039–2042.PubMedCrossRefGoogle Scholar
  2. 2.
    Charcot J-M, Marie P. Sur une forme particulière d’atrophie musculaire progressive souvent familial débutant par les pieds et les jambes et atteignant plus tard les mains. Rev Med 1886; 6: 97–138.Google Scholar
  3. 3.
    Tooth HH. The Peroneal Type of Progressive Muscular Atrophy. London, H.K. Lewis and Co., Ltd., 1886.Google Scholar
  4. 4.
    Skre, H. Genetic and clinical aspects of Charcot-Marie-Tooth’s disease. Clin Genet 1974; 6: 98–118.PubMedCrossRefGoogle Scholar
  5. 5.
    Matsunami N, Smith B, Ballard L, et al. Peripheral myelin protein-22 gene maps in the duplication in chromosomel7p11.2 associated with Charcot-Marie-Tooth 1A. Nat Genet 1992; 1: 176–179.PubMedCrossRefGoogle Scholar
  6. 6.
    Patel PI, Roa BB, Welcher AA et al. The gene for the peripheral myelin protein PMP-22 is a candidate for Charcot-Marie–Tooth disease type 1A. Nat Genet 1992; 1: 159–165.PubMedCrossRefGoogle Scholar
  7. 7.
    Timmerman V, Nelis E, Van Hul W et al. The peripheral myelin protein gene PMP-22 is contained within the Charcot-Marie-Tooth disease typel A duplication. Nat Genet 1: 1992; 171–175.PubMedCrossRefGoogle Scholar
  8. 8.
    Valentijn LJ, Bolhuis PA, Zorn I et al. The peripheral myelin gene PMP-22/GAS-3 is duplicated in Charcot-Marie-Tooth disease type la. Nat Genet 1992; 1: 166–170.PubMedCrossRefGoogle Scholar
  9. 9.
    Valentijn LJ, Baas F, Wolterman RA. Iden-Google Scholar
  10. tical point mutations of PMP-22 in Trena- b1er J mouse and Charcot-Marie-Tooth dis- ease type 1A. Nat Genet 1992; 2: 288–291.Google Scholar
  11. 10.
    Roa BB, Garcia CA, Suter U et al. CharcotMarie-Tooth disease type IA: Association with a spontaneous point mutation in the PMP22 gene. N Engl J Med 1993; 329: 96–101.PubMedCrossRefGoogle Scholar
  12. 11.
    Hayasaka K, Himoro M, Sato W et al. Charcot-Marie-Tooth neuropathy type 1B is associated with mutations of the myelin Po gene. Nat Genet 1993; 5: 31–34.PubMedCrossRefGoogle Scholar
  13. 12.
    Hayasaka K, Takada G, Ionasescu VV. Mutation of the myelin Po gene in CharcotMarie-Tooth neuropathy type 1B. Hum Mol Genet 1993; 2: 1369–1372.PubMedCrossRefGoogle Scholar
  14. 13.
    Hayasaka K, Ohnishi A, Takada G et al. Mutation of the myelin Po gene in CharcotMarie-Tooth neuropathy type 1. Biochem Biophys Res Commun 1993; 194: 1317–1322.PubMedCrossRefGoogle Scholar
  15. 14.
    Himoro M, Yoshikawa H, Matsui T et al. New mutation of the myelin Po gene in a pedigree of Charcot-Marie-Tooth neuropathy 1. Biochem & Mol Biol Intl 1993; 31: 169–173.Google Scholar
  16. 15.
    Kulkens T, Bolhuis PA, Wolterman RA et al. Deletion of the serine 34 codon from the major peripheral myelin protein Po gene in Charcot-Marie-Tooth disease type 1B. Nat Genet 1993; 5: 35–39.PubMedCrossRefGoogle Scholar
  17. 16.
    Herringham WP. Muscular atrophy of the peroneal type affecting many members of a family. Brain 1888; 11: 230–236.CrossRefGoogle Scholar
  18. 17.
    Ionasescu VV, Ionasescu R, Searby C. Screening of dominantly inherited CharcotMarie-Tooth neuropathies. Muscle Nerve 1993; 16: 1232–1238.PubMedCrossRefGoogle Scholar
  19. 18.
    Ionasescu VV, Trofatter J, Haines JL. Heterogeneity in X-linked recessive CharcotMarie-Tooth neuropathy. Am J Hum Genet 1991; 48: 1075–1083.PubMedGoogle Scholar
  20. 19.
    Ionasescu VV, Trofatter J, Haines JL et al. X-linked recessive Charcot-Marie-Tooth neuropathy-clinical and genetic study. Muscle Nerve 1992; 15: 368–373.PubMedCrossRefGoogle Scholar
  21. 20.
    Rozear MP, Pericak-Vance MA, Fischbeck K et al. Hereditary motor and sensory neuropathy, X-linked: A half century follow-up. Neurology 1987; 37: 1460–1465.PubMedCrossRefGoogle Scholar
  22. 21.
    Hahn AF, Brown WF, Koopman WJ et al. X-linked dominant hereditary motor and sensory neuropathy. Brain 1990; 113: 1511–1525.PubMedCrossRefGoogle Scholar
  23. 22.
    Nicholson GA, Nash J. Intermediate nerve conduction velocities define X-linked Charcot-Marie-Tooth neuropathy families. Neurology 1993; 43: 2558–2564.PubMedCrossRefGoogle Scholar
  24. 23.
    Kaku DA, Parry GJ, Malamut R et al. Nerve conduction studies in Charcot-Marie-Tooth polyneuropathy associated with a segmental duplication of chromosome 17. Neurology 1993; 43: 1806–1808.PubMedCrossRefGoogle Scholar
  25. 24.
    Harding AE, Thomas PK. The clinical features of hereditary motor and sensory neuropathy types I and II. Brain 1980; 103: 259–280.PubMedCrossRefGoogle Scholar
  26. 25.
    Allan W. Relation of hereditary pattern to clinical severity as illustrated by peroneal atrophy. Arch Intern Med 1939; 63: 1123–1131.CrossRefGoogle Scholar
  27. 26.
    Erwin WG. A pedigree of sex-linked recessive peroneal atrophy. J Hered 1944; 35: 24–26.Google Scholar
  28. 27.
    Campeanu E, Morariu, M. Les relations entre genotype et phenotype dans la maladie de Charcot-Marie-Tooth. Rev Roum Neurol 1970; 7: 47–56.PubMedGoogle Scholar
  29. 28.
    Fryns JP, van den Berghe, H. Sex-linked recessive inheritance in Charcot-Marie-Tooth disease with partial clinical manifestations in female carriers. Hum Genet 1980; 55: 413–415.PubMedCrossRefGoogle Scholar
  30. 29.
    Woratz G. Neurale Muskelatrophie mit dominantem X-chromosomalem Erbgang. Abh Dtsch Akad Wissensch Berl Nr. 2, 1964.Google Scholar
  31. 30.
    de Weerdt CJ. Charcot-Marie-Tooth disease with sex-linked inheritance, linkage studies and abnormal serum alkaline phosphatase levels. Eur Neurol 1978; 17: 336–344.PubMedCrossRefGoogle Scholar
  32. 31.
    Iselius L, Grimby L. A family with CharcotMarie-Tooth’s disease, showing a probable X-linked incompletely dominant inheritance. Hereditas 1982; 97: 157–158.PubMedCrossRefGoogle Scholar
  33. 32.
    Phillips LH, Kelly TE, Schnatterly P et al. Hereditary motor-sensory neuropathy (HMSN): Possible X-linked dominant inheritance. Neurology 1985; 35: 498–502.PubMedCrossRefGoogle Scholar
  34. 33.
    Gal A, Mucke J, Theile H, Wieacker PF et al. X-linked dominant Charcot-Marie-Tooth disease: Suggestion of linkage with a cloned DNA sequence from the proximal Xq. Hum Genet 1985; 70: 38–42.PubMedCrossRefGoogle Scholar
  35. 34.
    Beckett J, Holden JJA, Simpson NE et al. Localization of X-linked dominant CharcotMarie-Tooth disease (CMT2) to Xg13. J Neurogenet 1986; 3: 225–231.PubMedCrossRefGoogle Scholar
  36. 35.
    Fischbeck KH, ar-Rushdi N, Pericak-Vance M et al. X-linked neuropathy: Gene localization with DNA probes. Ann Neurol 1986; 20: 527–532.PubMedCrossRefGoogle Scholar
  37. 36.
    Kelly TE, Lunt P, Schnatterly P et al. Evidence that bulbospinal neuropathy (BSNX) lies distal to DXYS1 and X-linked Charcot-Marie-Tooth disease (CMT-X) lies proximal to DXYS1 on Xq. Am J Hum Genet 1987; 41: A101.Google Scholar
  38. 37.
    Goonewardena P, Welinhinda J, Anvret M et al. A linkage study of the locus for X-linked Charcot-Marie-Tooth disease. Clin Genet 1988; 33: 435–440.PubMedCrossRefGoogle Scholar
  39. 38.
    Ionasescu VV, Burns TL, Searby C et al. X-linked dominant Charcot-Marie-Tooth neuropathy with 15 cases in a family: Genetic linkage study. Muscle Nerve 1988; 11: 1154–1156.PubMedCrossRefGoogle Scholar
  40. 39.
    Haites N, Fairweather N, Clark C et al. Linkage in a family with X-linked CharcotMarie-Tooth disease. Clin Genet 1989; 35: 399–403.PubMedCrossRefGoogle Scholar
  41. 40.
    Fischbeck KH, Ritter A, Shi Y et al. X-linked recessive and X-linked dominant Charcot-Marie-Tooth disease. In: Lovelace, R.E., Shapiro, H.K. Charcot-Marie-Tooth Disorders: Pathophysiology, Molecular Genetics, and Therapy. New York: Wiley-Liss, 1990: 335–341.Google Scholar
  42. 41.
    Mostacciuolo ML, Miller E, Fardin P et al. X-linked Charcot-Marie-Tooth disease-A linkage study in a large family by using 12 probes of the pericentromeric region. Hum Genet 1991; 87: 23–27.PubMedCrossRefGoogle Scholar
  43. 42.
    Ionasescu VV, Trofatter J, Haines JL et al. Mapping of the gene for X-linked dominant Charcot-Marie-Tooth neuropathy. Neurology 1992a; 42: 903–908.PubMedCrossRefGoogle Scholar
  44. 43.
    Bergoffen J, Trofatter J, Pericak-Vance MA et al. Linkage localization of X-linked Charcot-Marie-Tooth disease. Am J Hum Genet 19936; 52: 312–318.Google Scholar
  45. 44.
    Fain PR, Barker DF, Chance PF. Refined genetic mapping of X-linked Charcot-Marie-Tooth neuropathy. Am J Hum Genet 1994; 54: 229–235.PubMedGoogle Scholar
  46. 45.
    Cochrane S, Bergoffen J, Fairweather ND et al. X-linked Charcot-Marie-Tooth disease (CMTX1) -A study of 15 families with 12 highly informative polymorphisme. J Med Genet 1994; 31: 193–196.PubMedCrossRefGoogle Scholar
  47. 46.
    Brown CJ, Sekiguchi T, Nishimoto T et al. Regional localization of CCG1 gene which complements hamster cell cycle mutation BN462 to Xgll-Xg13. Somat Cell Molec Genet 1989; 15: 93–96.PubMedCrossRefGoogle Scholar
  48. 47.
    Noguchi M, Yi H, Rosenblatt HM et al. Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 1993; 73: 147–157.PubMedCrossRefGoogle Scholar
  49. 48.
    Puck JM, Deschênes SM, Porter JC et al. The interleukin-2 receptor gamma chain maps to Xq13.1 and is mutated in X-linked severe combined immunodeficiency, SCIDX1. Hum Mol Genet 1993; 2: 1099–1104.PubMedCrossRefGoogle Scholar
  50. 49.
    Corcos IA, Lafrenière RG, Begy CR et al. Refined localization of human connexin32 gene locus, GJB1, to Xg13.1. Genomics 1992; 13: 479–480.PubMedCrossRefGoogle Scholar
  51. 50.
    Raimondi E, Gaudi S, Moralli D et al. Assignment of the human connexin32 gene (GJB1) to band Xq 13. Cytogenet Cell Genet 1992; 60: 210–211.PubMedCrossRefGoogle Scholar
  52. 51.
    Cherryson AK, Yeung L, Kennerson ML et al. Mutational studies in X-linked CharcotMarie-Tooth disease (CMTX). Am J Hum Genet 1994; 55 (suppl): 1261.Google Scholar
  53. 52.
    Fairweather N, Bell C, Cochrane S et al. Mutations in the connexin32 gene in X-linked dominant Charcot-Marie-Tooth disease (CMTX1). Hum Mol Genet 1994; 3: 29–34.PubMedCrossRefGoogle Scholar
  54. 53.
    Ionasescu V, Searby C, Ionasescu R. Point mutations of the connexin32 (GJB1) gene in X-linked dominant Charcot-Marie-Tooth neuropathy. Hum Mol Genet 1994; 3: 355–358.PubMedCrossRefGoogle Scholar
  55. 54.
    Orth U, Fairweather N, Exler MC et al. X-linked dominant Charcot-Marie-Tooth neuropathy: valine-38-methionine substitution of connexin32. Hum Mol Genet 1994; 3: 1699–1700.PubMedCrossRefGoogle Scholar
  56. 55.
    Tan CC, Ainsworth PJ, Hahn AF, MacLeod PM. Novel mutations in the connexin32 gene associated with X-linked Charcot Marie Tooth disease. Human Mutation 1996; 7: 167–171.PubMedCrossRefGoogle Scholar
  57. 56.
    Bone LJ, Dahl N, Lensch MW et al. New connexin32 mutations associated with X-linked Charcot-Marie-Tooth disease. Neurology 1995; 45: 1863–1866.PubMedCrossRefGoogle Scholar
  58. 57.
    Kumar N, Gilula NB. Cloning and characterization of human and rat liver cDNAs coding for a gap junction protein. J Cell Biol 1986; 103: 767–776.PubMedCrossRefGoogle Scholar
  59. 58.
    Omitted in proofs.Google Scholar
  60. 59.
    Miller T, Dahl G., Werner R. Structure of a gap junction gene: rat connexin32. Biosci Reports 1988; 8: 455–464.CrossRefGoogle Scholar
  61. 60.
    Hennemann H, Kozjek G, Dahl E et al. Molecular cloning of mouse connexins26 and -32: similar genomic organization but distinct promoter sequences of two gap junction genes. Eur J Cell Biol 1992; 58: 81–89.PubMedGoogle Scholar
  62. 61.
    Neuhaus IM, Dahl G, Werner R. Use of alternate promoters for tissue-specific expression of the gene coding for connexin32. Gene 1995., 158: 257–262.Google Scholar
  63. 62.
    Revel J-P, Hoh JH, John SA et al. Aspects of gap junction structure and assembly. Semin Cell Biol 1992; 3: 21–28.PubMedCrossRefGoogle Scholar
  64. 63.
    Stauffer KA, Unwin N. Structure of gap junction channels. Semin Cell Biol 1992; 3: 17–20.PubMedCrossRefGoogle Scholar
  65. 64.
    Werner R, Levine E, Rabadan-Diehl C et al. Gating properties of connexin32 cell-cell channels and their mutants expressed in Xenopus oocytes. Proc R Soc Lond 1991; 243: 5–11.CrossRefGoogle Scholar
  66. 65.
    Rabadan-Diehl C, Dahl G, Werner R. A connexin32 mutation associated with Charcot-Marie-Tooth disease does not affect channel formation in oocytes. FEBS Lett 1994; 351: 90–94.PubMedCrossRefGoogle Scholar
  67. 66.
    Omori Y, Mesnil M, Yamasaki H. Connexin32 mutations from x-linked CharcotMarie-Tooth disease patients: Functional defects and dominant negative effects. Molecular Biology of the Cell 1996; 7: 907–916.PubMedGoogle Scholar
  68. 67.
    Bruzzone R, White TW, Scherer SS et al. Null mutations of connexin32 in patients with X-linked Charcot-Marie-Tooth disease. Neuron 1994; 13: 1253–1260.PubMedCrossRefGoogle Scholar
  69. 68.
    Nicholson B, Dermietzel R, Teplow D et al. Two homologous protein components of hepatic gap junctions. Nature 1987; 329: 732–734.PubMedCrossRefGoogle Scholar
  70. 69.
    Meda P, Pepper MS, Traub O et al. Differential expression of gap junction connexins in endocrine and exocrine glands. Endocrinol 1993; 133: 2371–2378.CrossRefGoogle Scholar
  71. 70.
    Barrio LC, Suchyna T, Bargiello T et al. Gap junctionss formed by connexins 26 and 32 alone and in combination are differently affected by applied voltage. Proc Natl Acad Sci USA 1991; 88: 8410–8414.PubMedCrossRefGoogle Scholar
  72. 71.
    Lemke G. Myelin and myelination. In: Hall, Z.W. Molecular Neurobiology. Sunderland, MA: Sinauer, 1992: 281–312.Google Scholar
  73. 72.
    Lemke G. The molecular genetics of myelination-an update. Glia 1993; 7: 263–271.PubMedCrossRefGoogle Scholar
  74. 73.
    Hudson L. Molecular biology of myelin proteins in the central and peripheral nervous systems. Sem Neurosci 1990; 2: 487–496.Google Scholar
  75. 74.
    Chance PF, Pleasure D. Charcot-MarieTooth syndrome. Arch Neurol 1993; 50: 1180–1183.PubMedCrossRefGoogle Scholar
  76. 75.
    Suter U, Welcher AA, Snipes GJ. Progress in the molecular understanding of hereditary peripheral neuropathies reveals new insights into the biology of the peripheral nervous system. Trends Neurosci 1993; 16: 50–56.PubMedCrossRefGoogle Scholar
  77. 76.
    Peters A, Palay SL, Webster HD. The Fine Structure of the Nervous System. New York, Oxford University Press, PP. 494; 1991.Google Scholar
  78. 77.
    Apostolski S, Sadiq SA, Hays A, Corbo M et al. Identification of Gal(b1–3)Ga1NAcbearing glycoproteins at the nodes of Ranvier in peripheral nerve. J Neurosci Res 1994; 38: 134–141.PubMedCrossRefGoogle Scholar
  79. 78.
    Fannon AM, Sherman DL, Ilyina-Gragerova G et al. Novel E-cadherin mediated adhesion in peripheral nerve: Schwann cell architecture is stabilized by autotypic adherens junctions. J Cell Biol 1995; 129: 189–202.PubMedCrossRefGoogle Scholar
  80. 79.
    Trapp BD, Quarles RH. Presence of the myelin-associated glycoprotein correlates with alterations in the periodicity of peripheral myelin. J Cell Biol 1982; 9: 2877–882.Google Scholar
  81. 80.
    Scherer SS, Deschênes SM, Xu Y-T et al. Connexin32 is a myelin-related protein in the PNS and CNS. J Neurosci 1995, 15: 8281–8294.PubMedGoogle Scholar
  82. 81.
    Sandri C, van Buren JM, Akert K. Membrane morphology of the vertebrate nervous system: a study with freeze-etch technique. In: Progress in Brain Research, Vol. 46. 2nd rev. ed. New York, Elsevier Biomedical Press, 1982: 201–265.Google Scholar
  83. 82.
    Dermietzel R, Traub O, Hwang TK et al. Differential expression of three gap junction proteins in developing and mature brain tissues. Proc Natl Acad Sci USA 1989; 86: 10148–10152.PubMedCrossRefGoogle Scholar
  84. 83.
    Micevych PE, Abelson L. Distribution of mRNAs coding for liver and heart gap junction proteins in the rat central nervous system. J Comp Neurol 1991; 305: 96–118.PubMedCrossRefGoogle Scholar
  85. 84.
    Robinson SR, Hampson ECGM, Munro MN et al. Unidirectional coupling of gap junctions between neuroglia. Science 1993; 262: 1072–1074.PubMedCrossRefGoogle Scholar
  86. 85.
    Dermietzel R, Hwang TK, Spray DC. The gap junction family: Structure, function and chemistry. Anat. Embryol. 1990; 182: 517–528.PubMedCrossRefGoogle Scholar
  87. 86.
    Bennett MVL, Barrio LC, Bargiello TA et al. Gap junctions: New tools, new answers, new questions. Neuron 1991; 6: 305–320.PubMedCrossRefGoogle Scholar
  88. 87.
    Paulson H, Deschênes S, Scherer S et al. CNS white matter abnormalities in a patient with X-linked Charcot-Marie-Tooth disease (CMTX). Am J Hum Genet 1994; 5 5(suppl): A89.Google Scholar
  89. 87a.
    Kumar NM, Gilula NB. Molecular biology and genetics of gap junction channels. Semin Cell Biol 1992; 3: 3–16.PubMedCrossRefGoogle Scholar
  90. 88.
    Sobue G, Pleasure D. Schwann cell galactocerebroside induced by derivatives of adenosine 3’,5’-monophosphate. Science 1984; 224: 72–74.PubMedCrossRefGoogle Scholar
  91. 89.
    Lemke G, Chao M. Axons regulate Schwann cell expression of the major myelin and NGF receptor genes. Development 1988; 102: 499–504.PubMedGoogle Scholar
  92. 90.
    Morgan L, Jessen KR, Mirsky R. The effects of cAMP on differentiation of cultured Schwann cells: progression from an early phenotype (04+) to a myelin phenotype (Po+, GFAP-, N-CAM-, NGF-receptor-) depends on growth inhibition. J Cell Biol 1991; 112: 457–467.PubMedCrossRefGoogle Scholar
  93. 91.
    Morgan L, Jessen KR, Mirsky R. Negative regulation of the Po gene in Schwann cells: suppression of Po mRNA and protein in cultured Schwann cells by FGF2 and TGFb1, TGFb2 and TGFb3. Development 1994; 120: 1399–1409.PubMedGoogle Scholar
  94. 92.
    Konishi T. Dye coupling between mouse Schwann cells. Brain Res 1990; 508: 85–92.PubMedCrossRefGoogle Scholar
  95. 93.
    Tetzlaff W. Tight junction contact events and temporary gap junctions in the sciatic nerve fibres of the chicken during Wallerian degeneration and subsequent regeneration. J Neurocytol 1982; 11: 839–858.PubMedCrossRefGoogle Scholar
  96. 94.
    Chanson M, Chandross KJ, Rook MB et al. Gating characteristics of a steeply voltage dependent gap junction channel in rat Schwann-cells. J Gen Physiol 1993; 102: 925–946.PubMedCrossRefGoogle Scholar
  97. 95.
    Chandross KJ, Chanson M, Spray DC et al. Transforming growth factor-bl and forskolin modulate gap junctional communication and cellular phenotype of cultured Schwann cells. J Neurosci 1995b; 15: 262–273.PubMedGoogle Scholar
  98. 96.
    Chandross KJ, Kessler JA, Spray DC et al. Altered gap junction expression after peripheral nerve injury. Mol Cell Neurosci 1996; in press.Google Scholar
  99. 97.
    Nelles E, Jung D, Gabriel H-D et al. Characterization of Connexin32 deficient mice generated by gene targeting. 1995 Gap Junction Conference; 1995, March 5–10; Ile des Embiez, France.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Suzanne M. Deschênes
  • Linda Jo Bone
  • Kenneth H. Fischbeck
  • Steven S. Scherer

There are no affiliations available

Personalised recommendations