Skip to main content

Effect of Gap Junctional Communication on Glioma Cell Function

  • Chapter
Book cover Gap Junctions in the Nervous System

Part of the book series: Neuroscience Intelligence Unit ((NIU.LANDES))

Abstract

The gap junction is the site of the intercellular membrane channels which provide for direct cytoplasmic continuity between adjacent cells.1 The structural unit of the gap junction is the connexon, a proteinaceous cylinder with a hydrophilic channel; connexons spanning the plasma membranes of closely-apposed cells align end-to-end, forming intercellular channels. Gap junction channels provide for the exchange of small molecules (less than 1000 Daltons) between cells to allow metabolic cooperation;2 they also transmit developmental signals involved in cell patterning.3 Among the metabolites which pass through gap junction channels are second messengers such as inositol 1,4,5-trisphosphate and Ca2+, agents involved in cellular regulation.4–9 Due to the recent isolation of gap junction proteins, and the cloning of their mRNAs, it is now obvious that these proteins, the connexins, are encoded by a multigene family.10 Each connexin exhibits a characteristic tissue distribution in the adult animal, implying functional differentiation among the different types of channel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beyer EC. Gap junctions. Int Rev Cytol 1993; 137C: 1–37.

    Article  Google Scholar 

  2. Gilula NB, Reeves OR, Steinbach A. Metabolic coupling, ionic coupling, and cell contacts. Nature 1972; 235: 262–265.

    Article  PubMed  CAS  Google Scholar 

  3. Fraser SE, Green CR, Bode HR et al. Selective disruption of gap junctional communication interferes with a patterning process in hydra. Science 1987; 237: 49–55.

    Article  PubMed  CAS  Google Scholar 

  4. Saez JC, Connor JA, Spray DC et al. Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-trisphosphate, and to calcium ions. Proc Natl Acad Sci USA 1989; 86: 2708–2712.

    Article  PubMed  CAS  Google Scholar 

  5. Charles AC, Merrill JE, Dirksen ER et al. Intercellular signaling in glial cells: Calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 1991; 6: 983–992.

    Article  PubMed  CAS  Google Scholar 

  6. Charles AC, Naus CCG, Zhu D et al. Intercellular calcium signaling via gap junctions in glioma cells. J Cell Biol 1992; 118: 195–201.

    Article  PubMed  CAS  Google Scholar 

  7. Finkbeiner S. Calcium waves in astrocytesfilling in the gaps. Neuron 1992; 8: 1101–1108.

    Article  PubMed  CAS  Google Scholar 

  8. Dani JW, Chernjaysky A, Smith SJ. Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 1992; 8: 429–440.

    Article  PubMed  CAS  Google Scholar 

  9. Cornell-Bell AH, Finkbeiner SM, Cooper MS et al. Glutamate induces calcium waves in cultured astrocytes: Long-range glial signalling. Science 1990; 247: 470–473.

    Article  PubMed  CAS  Google Scholar 

  10. Kumar NM, Gilula NB. Molecular biology and genetics of gap junction channels. Seminars in Cell Biology 1992; 3: 3–16.

    Article  PubMed  CAS  Google Scholar 

  11. Brightman MW, Reese TS. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 1969; 40: 648–677.

    Article  PubMed  CAS  Google Scholar 

  12. Mugnaini E. Cell junctions of astrocytes, ependyma, and related cells in the mammalian central nervous system, with emphasis on the hypothesis of a generalized functional syncytium of supporting cells. In: Federoff S, Vernadakis A, eds. Development, Morphology, and Regional Specialization of Astrocytes, Vol. I. Orlando, Florida: Academic Press, 1986: 329–371.

    Google Scholar 

  13. Walz W, Hertz L. Functional interactions between neurons and astrocytes. II. Potassium homeostasis at the cellular level. Prog Neurobiol 1983; 20: 133–183.

    Article  PubMed  CAS  Google Scholar 

  14. Giaume C, Marin P, Cordier J et al. Adrenergic regulation of intercellular communications between cultured striatal astrocytes from the mouse. Proc Natl Acad Sci USA 1991; 88: 5577–5581.

    Article  PubMed  CAS  Google Scholar 

  15. Giaume C, Fromaget C, el Aoumari A et al. Gap junctions in cultured astrocytes:singlechannel currents and characterization of channel-forming protein. Neuron 1991; 6: 133–143.

    Article  PubMed  CAS  Google Scholar 

  16. Giaume C, Cordier J, Glowinski J. Endothelins inhibit junctional permeability in cultured mouse astrocytes. Eur J Neurosci 1992; 4: 877–881.

    Article  PubMed  Google Scholar 

  17. Mantz J, Cordier J, Giaume C. Effects of general anesthetics on intercellular communications mediated by gap junctions between astrocytes in primary culture. Anesthesiology 1993; 78: 892–901.

    Article  PubMed  CAS  Google Scholar 

  18. Giaume C. Noradrenergic control of gap junction permeability in cultured striatal astrocytes. In: Noradrenergic Mechanisms in Parkinson’s Disease. CRC Press, 1994; 205–224.

    Google Scholar 

  19. Yamamoto T, Ochalski A, Hertzberg EL et al. On the organization of astrocytic gap junctions in rat brain as suggested by LM and EM immunohistochemistry of connexin43 expression. J Comp Neurol 1990; 302: 853–883.

    Article  PubMed  CAS  Google Scholar 

  20. Yamamoto T, Vukelic J, Hertzberg EL et al. Differential anatomical and cellular patterns of connexin43 expression during postnatal development of rat brain. Brain Res Dev Brain Res 1992; 66: 165–180.

    Article  PubMed  CAS  Google Scholar 

  21. Vukelic JI, Yamamoto T, Hertzberg EL et al. Depletion of connexin43-immunoreactivity in astrocytes after kainic acid-induced lesions in rat brain. Neurosci Lett 1991; 130: 120–124.

    Article  PubMed  CAS  Google Scholar 

  22. Nagy JI, Yamamoto T, Sawchuk MA et al. Quantitative immunohistochemical and biochemical correlates of connexin43 localization in rat brain. Glia 1992; 5: 1–9.

    Article  PubMed  CAS  Google Scholar 

  23. Charles AC. Glia-neuron intercellular calcium signaling. Dev Neurosci 1994; 16: 196–206.

    Article  PubMed  CAS  Google Scholar 

  24. Charles AC, Dirksen ER, Merrill JE et al. Mechanisms of intercellular calcium signaling in glial cells studied with dantrolene and thapsigargin. Glia 1993; 7: 134–145.

    Article  PubMed  CAS  Google Scholar 

  25. Fischer G, Kettenmann H. Cultured astrocytes form a syncytium after maturation. Exp Cell Res 1985; 159: 273–279.

    Article  PubMed  CAS  Google Scholar 

  26. Dermietzel R, Hertberg EL, Kessler JA et al. Gap junctions between cultured astrocytes: immunocytochemical, molecular, and electrophysiological analysis. J Neurosci 1991; 11: 1421–1432.

    PubMed  CAS  Google Scholar 

  27. Batter DK, Corpina RA, Roy C et al. Heterogeneity in gap junction expression in astrocytes cultured from different brain regions. Glia 1992; 6: 213–221.

    Article  PubMed  CAS  Google Scholar 

  28. Kettenmann H, Ransom BR. Electrical coupling between astrocytes and between oligodendrocytes studied in mammalian cell cultures. Glia 1988; 1: 64–73.

    Article  PubMed  CAS  Google Scholar 

  29. Lee SH, Kim WT, Cornell-Bell AH et al. Astrocytes exhibit regional specificity in gap-junction coupling. Glia 1994; 11: 315–325.

    Article  PubMed  CAS  Google Scholar 

  30. Belliveau DJ, Naus CCG. Cortical type 2 astrocytes are not dye coupled nor do they express the major gap junction genes found in the central nervous system. Glia 1994; 12: 24–34.

    Article  PubMed  CAS  Google Scholar 

  31. Lin ZX, Chang CC, Trosko JE. Gap junctional intercellular communication (GJIC) in rat glioma cells-characterizations to detect inhibitors of metabolic cooperation. Sci China 1990; 33: 435–443.

    CAS  Google Scholar 

  32. Knedlitschek G, Anderer U, Weibezahn KF et al. Radioresistance of rat glioma cell lines cultured as multicellular spheroids. Correlation with electrical cell-tocell-coupling. Strahlenther Onkol 1990; 166: 164–167.

    PubMed  CAS  Google Scholar 

  33. Tiffany Castiglioni E, Neck KF, Caceci T. Glial culture on artificial capillaries: electron microscopic comparisons of C6 rat glioma cells and rat astroglia. J Neurosci Res 1986; 16: 387–396.

    Article  Google Scholar 

  34. Aslanidi KB, Boitsova LJ, Chailakhyan LM et al. Energetic cooperation via ion-permeable junctions in mixed animal cell cultures. FEBS Lett 1991; 283: 295–297.

    Article  PubMed  CAS  Google Scholar 

  35. Ciment G, de Vellis J. Cell surface-mediated cellular interactions: effects of B104 neuroblastoma surface determinants on C6 glioma cellular properties. J Neurosci Res 1982; 7: 371–386.

    Article  PubMed  CAS  Google Scholar 

  36. Hülser DF, Lauterwasser U. Membrane potential oscillations in homokaryons. An endogenous signal for detecting intercellular communication. Exp Cell Res 1982; 139: 63–70.

    Article  PubMed  Google Scholar 

  37. Tani E, Higashi N. Freeze-fracture study of human brain tumors. Childs Brain 1975; 1: 46–71.

    PubMed  CAS  Google Scholar 

  38. Tani E, Nishiura M, Higashi N. Freeze-fracture studies of gap junctions of normal and neoplastic astrocytes. Acta Neuropathol (Berl) 1973; 26: 127–138.

    Google Scholar 

  39. Martuza RL, Malick A, Markert JM et al. Experimental therapy of human glioma by means of genetically engineered virus mutant. Science 1991; 252: 854–855.

    Article  PubMed  CAS  Google Scholar 

  40. Ruch RJ. The role of gap junctional intercellular communication in neoplasia. Ann Clin Lab Sci 1994; 24: 216–231.

    PubMed  CAS  Google Scholar 

  41. Holder JW, Elmore E, Barrett JC. Gap junction function and cancer. Cancer Res 1993; 53: 3475–3485.

    PubMed  CAS  Google Scholar 

  42. Yamasuki H, Naus CCG. Role of connexin genes in growth control. Carcinogenesis 1996; 17: 1199–12

    Article  Google Scholar 

  43. Swenson KI, Piwnica-Worms H, McNamee H et al. Tyrosine phosphorylation of the gap junction protein connexin43 is required for the pp60“-src-induced inhibition of communication. Cell Regul 1990; 1: 989–1002.

    PubMed  CAS  Google Scholar 

  44. Lee SW, Tomasetto C, Sager R. Positive selection of candidate tumor-suppressor genes by subtractive hybridization. Proc Natl Acad Sci USA 1991; 88: 2825–2829.

    Article  PubMed  CAS  Google Scholar 

  45. Mandelboim O, Berke G, Fridkin M et al. CTL induction by a tumor-associated antigen octapeptide derived from a murine lung carcinoma. Nature 1994; 369: 67–71.

    Article  PubMed  CAS  Google Scholar 

  46. Yamasaki H. Gap junctional intercellular communication and carcinogenesis. Carcinogenesis 1990; 11: 1051–1058.

    Article  PubMed  CAS  Google Scholar 

  47. Yamasaki H. Changes of gap junctional intercellular communication during multistage carcinogenesis. Frog Clin Biol Res 1990; 340D: 153–164.

    Google Scholar 

  48. Benda P, Lightbody J, Sato G et al. Differentiated rat glial cell strain in tissue culture. Science 1968; 161: 370–371.

    Article  PubMed  CAS  Google Scholar 

  49. Naus CCG, Elisevich K, Zhu D et al. In vivo growth of C6 glioma cells transfected with connexin43 cDNA. Cancer Res 1992; 52: 4208–4213.

    PubMed  CAS  Google Scholar 

  50. Bond SL, Bechberger JF, Khoo NKS et al. Transfection of C6 glioma cells with connexin32: the effects of expression of a nonendogenous gap junction protein. Cell Growth & Diff 1994; 5: 179–186.

    CAS  Google Scholar 

  51. Naus CCG, Bechberger JF, Caveney S et al. Expression of gap junction genes in astrocytes and C6 glioma cells. Neurosci Lett 1991; 126: 33–36.

    Article  PubMed  CAS  Google Scholar 

  52. Zhu D, Caveney S, Kidder GM et al. Transfection of C6 glioma cells with connexin43 cDNA: analysis of expression, intercellular coupling, and cell proliferation. Proc Natl Acad Sci USA 1991; 88: 1883–1887.

    Article  PubMed  CAS  Google Scholar 

  53. Bechberger JF, Khoo N, Naus CCG. Invisible expression of connexin43 in glioma cells. Cell Grown & Diff 1996; in press.

    Google Scholar 

  54. Eghbali B, Kessler JA, Reid LM et al. Involvement of gap junctions in tumorigenesis: Transfection of tumor cells with connexin32 cDNA retards growth in vivo. Proc Natl Acad Sci USA 1991; 88: 10701–10705.

    Article  PubMed  CAS  Google Scholar 

  55. Tomasetto C, Neveu MJ, Daley J et al. Specificity of gap junction communication among human mammary cells and connexin transfectants in culture. J Cell Biol 1993; 122: 157–167.

    Article  PubMed  CAS  Google Scholar 

  56. Jou YS, Matesic D, Dupont E et al. Restoration of gap-junctional intercellular communication in a communication-deficient rat liver cell mutant by transfection with connexin43 cDNA. Mol Carcinog 1993; 8: 234–244.

    Article  PubMed  CAS  Google Scholar 

  57. Mehta PP, Hotz-Wagenblatt A, Rose B et al. Incorporation of the gene for a cell-cell channel protein into transformed cells leads to normalization of growth. J Membrane Biol 1991; 124: 207–225.

    Article  CAS  Google Scholar 

  58. Naus CCG, Zhu D, Todd SDL et al. Characterization of C6 glioma cells over-expressing gap junction protein. Cell Mol Neurobiol 1992; 12: 163–175.

    Article  PubMed  CAS  Google Scholar 

  59. Zhu D, Kidder GM, Caveney S et al. Growth retardation in glioma cells co-cultured with cells overexpressing a gap junction protein. Proc Natl Acad Sci USA 1992; 89: 10218–10221.

    Article  PubMed  CAS  Google Scholar 

  60. Dudek FE, Gribkoff VK, Olson JE et al. Reduction of dye coupling in glial cultures by microinjection of antibodies against the liver gap junction polypeptide. Brain Res 1988; 439: 275–280.

    Article  PubMed  CAS  Google Scholar 

  61. Meyer RA, Laird DW, Revel JP et al. Inhibition of gap junction and adherens junction assembly by connexin and A-CAM antibodies. J Cell Biol 1992; 119: 179–189.

    Article  PubMed  CAS  Google Scholar 

  62. Dahl G, Nonner W, Werner R. Attempts to define functional domains of gap junction proteins with synthetic peptides. Biophys J 1994; 67: 1816–1822.

    Article  PubMed  CAS  Google Scholar 

  63. Moore LK, Burt JM. Selective block of gap junction channel expression with connexinspecific antisense oligodeoxynucleotides. Amer J Physiol-Cell Physiol 1994; 36: C1371 - C1380.

    Google Scholar 

  64. Goldberg GS, Martyn KD, Lau AF. A connexin43 antisense vector reduces the ability of normal cells to inhibit the foci formation of transformed cells. Mol Carcinogen 1994; 11: 106–114.

    Article  CAS  Google Scholar 

  65. Reaume A, de Sousa P, Kulkarni S et al. Cardiac malformation in neonatal mice lacking connexin43. Science 1995; 267: 1831–1834.

    Article  PubMed  CAS  Google Scholar 

  66. McCarthy KD, de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 1980; 85: 890–902.

    Article  PubMed  CAS  Google Scholar 

  67. Culver KW, Ram Z, Wallbridge S et al. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 1992; 256: 1550–1552.

    Article  PubMed  CAS  Google Scholar 

  68. Bi WL, Parysek LM, Warnick R et al. In vitro evidence that metabolic cooperation is responsible for the bystander effect observed with HSV tk retroviral gene therapy. Human Gene Therapy 1993; 4: 725–731.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Naus, C.C.G., Becherger, J.F., Bond, S.L. (1996). Effect of Gap Junctional Communication on Glioma Cell Function. In: Gap Junctions in the Nervous System. Neuroscience Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21935-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21935-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21937-9

  • Online ISBN: 978-3-662-21935-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics