Advertisement

Frontalhirn pp 181-205 | Cite as

Bedeutung des Frontalhirns für die Pathophysiologie schizophrener Erkrankungen

  • B. Bogerts
Chapter

Zusammenfassung

Auf der Suche nach hirnbiologischen Substraten schizophrener Erkrankungen wurde schon früh vermutet, dass Veränderungen höherer ass oziativer kortikaler Bereiche mit der Erkrankung zusammenhängen. Zytologische Auffälligkeiten im Kortex „psychotischer“ Patienten wurden schon von Alzheimer (1897), Auffälligkeiten kortikaler Gyri in den Assoziationsfeldern bereits von Southard (1915) beschrieben. In der ersten Hälfte des 20. Jahrhunderts richtete sich einerseits das neuropathologische Interesse bei Schizophrenien überwiegend auf den Thalamus (Vogt u.Vogt 1948, 1952; Fünfgeld 1925; Fünfgeld 1952; Bäumer 1954; Hempel 1958; Hempel u. Treff 1959) und Basalganglien (Hopf 1954; Buttlar-Brentano 1956), wo mit qualitativen Methoden Nervenzellveränderungen (sog. „Schwundzellen“) beschrieben wurden. Diese Befunde wurden damals jedoch als unspezifisch oder artefiziell in Frage gestellt (Heyck 1954; Peters 1967).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Akbarian S, Kim JJ, Potkin SG, Hetrick WP, Bunney WE, Jones EG (1996) Maldistribution of interstitial neurons in the prefrontal white matter of the brains of schizophrenics. Arch Gen Psychiatry 53: 425–436PubMedGoogle Scholar
  2. Akil M, Lewis DA (1997) Cytoarchitecture of the entorhinal cortex in schizophrenia. Am J Psychiatry 154: 1010–1012PubMedGoogle Scholar
  3. Alzheimer A (1897) Beiträge zur Pathologischen Anatomie der Hirnrinde and zur anatomischen Grundlage der Psychosen. Monatsschr Psychiatr Neurol 2: 82–120Google Scholar
  4. Anderson SA, Volk DW, Lewis DA (1996) Increased density of microtobule associated protein 2-immunoreactive neurons in the prefrontal white matter of schizophrenic subjects. Schizophr Res 19: 111–119PubMedGoogle Scholar
  5. Andreasen NC, Flashman L, Flaum M et al. (1994) Regional brain abnormalities in schizophrenia measured with magnetic resonance imaging. JAMA 272: 1763–1769PubMedGoogle Scholar
  6. Andreasen NC, O’Leary DS, Cizadlo T et al. (1996) Schizophrenia and cognitive dysmetria: A positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc Natl Acad Sci USA 93: 9985–9990Google Scholar
  7. Arnold SE, Hyman BT, VanHösen GW, Damasio AR (1991) Some cytoarchitectural abnor- malities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry 48: 625–632PubMedGoogle Scholar
  8. Arnold SE, Ruscheinsky DD, Han LY (1997) Further evidence of abnormal cytoarchitecture of the entorhinal cortex in schizophrenia using spatial point pattern analyses. Biol Psychiatry 42: 639–647PubMedGoogle Scholar
  9. Bachus SE, Kleinman JE (1996) The neuropathology of schizophrenia. J Clin Psychiatry 57 (Suppl 11): 72–83PubMedGoogle Scholar
  10. Barta PE, Pearlson GD, Powers RE, Richards SS, Tune LE (1990) Reduced volume of superior temporal gyrus in schizophrenia; relationship to auditory hallucinations. Am J Psychiatry 147: 1457–1462PubMedGoogle Scholar
  11. Bartha R, Williamson PC, Drost DJ et al. (1997) Measurement of glutamat and glutamine in the medial prefrontal cortex of never treated schizophrenic patients and helthy controls by proton magnetic resonance spectroscopy. Arch Gen Psychiatry 54: 959–965PubMedGoogle Scholar
  12. Baumann B, Bogerts B (1999) The pathomorphology of schizophrenia and mood disorders: similarities and differences. Schizophr Res 39: 141–148PubMedGoogle Scholar
  13. Bäumer H (1954)Veränderungen des Thalamus bei Schizophrenie. J Hirnforsch 1: 157172Google Scholar
  14. Beasley CL, Reynolds GP (1997) Parvalbumin-immunoreactive neurons are reduced in the prefrontal cortex of schizophrenics. Schizophr Res 24: 349–355PubMedGoogle Scholar
  15. Benes FM (1995) Altered glutamatergic and GABAergic mechanisms in the cingulate cortex of the schizophrenic brain. Arch Gen Psychiatry 52: 1015–1018PubMedGoogle Scholar
  16. Benes FM, Bird ED (1987) An analysis of the arrangement of neurons in the cingulate cortex of schizophrenic patients. Arch Gen Psychiatry 44: 608–616PubMedGoogle Scholar
  17. Benes FM, McSparren J, Bird ED, SanGiovanni JP, Vincent SL (1991) Deficits in small inter-neurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry 48: 996–1001PubMedGoogle Scholar
  18. Bernstein HG, Krell D, Baumann B et al. (1998) Morphometric Studies of the entorhinal cortex in neuropsychiatric patients and controls:clusters of heterotopically displaced lamina II neurons are not indicative of schizophrenia. Schizophr Res 33: 125–132PubMedGoogle Scholar
  19. Bernstein HG, Grecksch G, Becker A, Höllt V, Bogerts B (1999) Celluler changes in rat rain areas associated with neonatal hippocampal damage. Neuroreport 10: 2307–2311PubMedGoogle Scholar
  20. Bertolino A, Saunders RC Mattay VS, Bachevalier J, Frank JA, Weinberger DR (1997) Altered development of prefrontal neurons in rhesus monkey with neonatal mesial ternporolimbic lesions: a proton magnetic resonance spectroscopic imaging study. Cereb Cortex 7: 740–748PubMedGoogle Scholar
  21. Bertolino A, Esposito G, Callicott JH et al. (2000) Secific relationship between prefrontal neuronal N-acetylaspartrate and activation of the working memory cortical network in schizophrenia. Am J Psychiatry 157: 26–33PubMedGoogle Scholar
  22. Bilder RM, Wu H, Bogerts B et al. (1994) Absence of regional hemispheric volume as ymmetries in first episode schizophrenia. Am J Psychiatry 151: 1437–1447PubMedGoogle Scholar
  23. Bilder RM, Bogerts B, Ashtari M et al. (1995) Anterior hippocampal volume reductions predict „frontal lobe“ dysfunction in first episode schizophrenia. Schizophr Res 17: 47–58PubMedGoogle Scholar
  24. Bogerts B (1984) Zur Neuropathologie der Schizophrenien. Fortschr Neurol Psychiatr 52: 428–437PubMedGoogle Scholar
  25. Bogerts B (1991) The neuropathology of schizophrenia: Pathophysiological and neuro-developmental implications. In: Mednick SA, Cannon TD, Barr CE (eds) Fetal neural development and adult schizophrenia. Cambridge University Press, Cambridge, pp 153–173Google Scholar
  26. Bogerts B (1997) The temporolimbic system theory of positive schizophrenic symptoms. Schizophrenia Bull 23: 423–435Google Scholar
  27. Bogerts B (1999)The Neuropathology of Schizophrenic Diseases. Eur Arch Psych Clin Neurosci 249 (Suppl 4): IV/2-IV/13Google Scholar
  28. Bogerts B, Falkai P (2000) Neuroanatomische and neuropathologische Grundlagen psychischer Störungen. In: Helmchen H, Henn F, Lauter H, Satorius N (Hrsg) Psychiatrie der Gegenwart, Bd 1. Springer, Berlin Heidelberg New York Tokio, S 277–310Google Scholar
  29. Bogerts B, Häntsch J, Herzer M (1983) A morphometric study of the dopamine containing cell groups in the mesencephalon of normals, Parkinson patients and schizophrenics. Biol Psychiatry 18: 951–960Google Scholar
  30. Bogerts B, Wurthmann C, Piroth HD (1987) Hirnsubstanzdefizit mit paralimbischem and limbischem Schwerpunkt im CT Schizophrener. Nervenarzt 58: 97–106PubMedGoogle Scholar
  31. Bogerts B, Falkai P, Haupts M, Greve B, Ernst St, Tapernon-Franz U, Heinzmann U (1990) Post-mortem volume measurements of limbic system and basal ganglia structures in chronic schizophrenics. Schizophr Res 3: 295–301PubMedGoogle Scholar
  32. Bryant NL, Buchanan RW, Vladar K, Breier A, Rothman M (1999) Gender differences in temporal structures of patients with schizophrenia: A volumetric MRI study. Am J Psychiatry 156: 603–609Google Scholar
  33. Buckner RL, Kelley WM, Petersen SE (1999) Frontal cortex contributes to memory formation. Naure Neurosci 2: 311–314Google Scholar
  34. Buttlar-Brentano K von (1956) Zur weiteren Kenntnis der Veränderungen des Basalkerns bei Schizophrenen. J Hirnforsch 2: 271–291Google Scholar
  35. Callicot JH, Bertolino A, Egan MF, Mattay VS, Langheim FJP, Weinberger D (2000) Selective relationship between prefrontal N-acetylaspartrat measures and negative symptoms in schizophrenia. Am J Psychiatry 157: 1646–1651Google Scholar
  36. Cannon TD, Mednick SA, Parnas J, Schulsinger F, Praestholm J, Vestergaard A (1993) Developmental brain abnormalities in the offspring of schizophrenic mothers, vol I. Contribution of genetic and perinatal factors. Arch Gen Psychiatry 50: 551–564Google Scholar
  37. Christison GW, Casanova MF, Weinberger D et al. (1989) A Quantitative investigation of hippocampal cell size, shape and variability of orientation in schiozophrenia. Arch Gen Psychiatry 46: 1027–1032PubMedGoogle Scholar
  38. Crow TJ (1990) Temporal lobe asymmetries as the key to the etiology of schizophrenia. Schizophr Bull 16 /3: 434–443Google Scholar
  39. Crow TJ (1993) Schizophrenia as an anomaly of cerebral asymmetry. In: Maurer K (ed) Imaging of the brain in psychiatry and related fields. Springer, Berlin Heidelberg New York Tokyo, pp 2–17Google Scholar
  40. Curtis VA, Bullmore ET, Morris RG et al. (1999) Attenuated frontal activation in schizophrenia may be task dependent. Schizophr Res 37: 35–44PubMedGoogle Scholar
  41. Danos P, Baumann B, Bernstein HG et al. (1998) Schizophrenia and anteroventral nucleus: selective decrease of parvalbumin-immunoreactive thalamocortical projection neurons. Psychiatry Res Neuroimag 82: 1–10Google Scholar
  42. Davison K, Bagley CR (1969) Schizophrenia-like psychosis associated with organic disorders of the central nervous system. A review of the literature. In: Hertington RN (ed) Current problems in neuropsychiatry. Br J Psychiatry Spec Publ 4: 113–187Google Scholar
  43. Davis SR, Lewis DA (1995) Local circuit neurons of the prefrontal cortex in schizophrenia: selective increase in the density of calbindin-immunoreactive neurons. Psychiatry Res 59: 81–96Google Scholar
  44. Degreef G, Bogerts B, Falkai P, Greve B, Lantos G, Ashtari M, Lieberman J (1992 a) Increased prevalence of the cavum septum pellucidum in MRI scans and postmortem brains of schizophrenic patients. Psychiatry Res Neuroimag 45: 1–13Google Scholar
  45. Degreef G, Ashtari M, Bogerts B, Bilder RM, Jody DN, Alvir JMJ, Lieberman JA (1992b) Volumes of ventricular system subdivisions measured from magnetic resonance images in first episode schizophrenic patients. Arch Gen Psychiatry 49: 531–537PubMedGoogle Scholar
  46. Deiken RF, Zhou L, Corwin F, Vinogradov S, Weiner MW (1997) Decreased left frontal lobe N-acetylaspartrate in schizophrenia. Am J Psychiatry 154: 688–690Google Scholar
  47. Eastwood SL, Burnet PW, Harrison PJ (1995) Altered synaptophysin expression as a marker of synaptic pathology in schizophrenia. Neuroscience 66: 309–319PubMedGoogle Scholar
  48. Erkwoh R, Sabril O, Willmes K, Steinmeyer EM, Büll U, Saß H (1999) Aspekte zerebraler Konnektivität bei Schizophrene. Fortschr Neurol Psychiatr 67: 318–326PubMedGoogle Scholar
  49. Falkai P, Bogerts B, Rozumek M (1988 a) Cell loss and volume reduction in the entorhinal cortex of schizophrenics. Biol Psychiatry 24: 515–521Google Scholar
  50. Falkai P, Bogerts B, Roberts GW, Crow TJ (1988b) Measurement of the alpha-cell-migration in the entorhinal region: a marker for developmental disturbances in schizophrenia? Schizophr Res 1: 157–158Google Scholar
  51. Falkai P, Bogerts B, Schneider T, Greve B, Pfeiffer U et al. ( 1995 a) Disturbed planum temporale asymmetry in schizophrenia. A quantitative post-mortem study. Schizophr Res 14: 161–167Google Scholar
  52. Falkai P, Schneider T, Greve B, Klieser E, Bogerts B (1995b) Reduced frontal and occipital lobe asymmetry on CT-scans of schizophrenic patients. Its specifity and clinical significance. J Neural Transm (GenSect) 99: 63–77Google Scholar
  53. Falkai P, Honert WG, David B, Bogerts B, Majtenyi C, Bayer TA (1999) No evidence for astrogliosis in brain of schizophrenic patients. A post-mortem study. Neuropathol Appl Neurobiol 25: 48–53Google Scholar
  54. Fallgatter AJ, Strick WK (2000) Reduced frontal activation asymmetry in schizophrenia during a cued continous performance test assessed with near-infrared spectroscopy. Schizophr Bull 26 /4: 913–919PubMedGoogle Scholar
  55. Flor-Henry P (1969) Psychosis and temporal lobe epilepsy: a controlled investigation. Epilepsia 10: 363–395PubMedGoogle Scholar
  56. Fünfgeld E (1925) Pathologisch-anatomische Untersuchungen bei Dementia praecox mit besonderer Berücksichtigung des Thalamus opticus. Z Ges Neurol Psychiatr 95: 411–463Google Scholar
  57. Fünfgeld EW (1952) Der Nucleus anterior thalami bei Schizophrenie. J Hirnforsch 1: 147–155Google Scholar
  58. Fuster JM (1989) The prefrontal cortex. Raven, New YorkGoogle Scholar
  59. Garver DL (1997) The etiologic heterogeneity of schizophrenia. Harvard Rev Psychiatry 4: 317–327Google Scholar
  60. Glantz LA, Lewis DA (1997) Reduction of synaptophysin immunoreactivity in the prefrontal cortex of subjects with schizophrenia: regional and diagnostic specifity. Arch Gen Psychiatry 54: 943–952PubMedGoogle Scholar
  61. Glanz LA, Lewis DA (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57: 65–73Google Scholar
  62. Goldman-Rakic P (1994) Cerebral cortical mechanisms in schizophrenia. Neuropsychopharmacology 10 (Supp13): 22–27Google Scholar
  63. Greenwood R, Bhalla A, Gordon A, Roberts J (1983) Behavior disturbances during recovery from herpes simplex encephalitis. J Neurol Neurosurg Psychiatry 46: 809–817PubMedGoogle Scholar
  64. Gur RE, Cowell PE, Latshaw A et al. (2000 a) Reduced dorsal and orbital prefrontal gray matter volumes in schizophrenia. Arch Gen Psychiatry 57: 761–768Google Scholar
  65. Gur RE, Turetsky BI, Cowell PE et al. (2000 b) Temporolimbic volume reductions in schizophrenia. Arch Gen Psychiatry 57: 769–775Google Scholar
  66. Harrison PJ (1999) The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122: 593–624PubMedGoogle Scholar
  67. Harvey I, Ron MA, Du Boulay G, Wicks SW, Lewis SW, Murray RM (1993) Reduction of cortical volume in schizophrenia on magnetic resonance imaging. Psychol Med 23: 591–604PubMedGoogle Scholar
  68. Heath RG (1982) Psychosis and epilepsy: similarities and differences in the anatomic-physiologic substrate. In: Koella WP, Trimble MR (eds) Temporal lobe epilepsy, mania and schizophrenia and the limbic system. Karger, Basel, pp 106–116Google Scholar
  69. Heckers S, Goff D, Schacter DL, Savage CR, Fischman AJ, Alpert NM, Rauch SL (1999) Fuctional imaging of memory retrieval in deficit vs. nondeficit schizophrenia. Arch Gen Psychiatry 56: 1117–1123PubMedGoogle Scholar
  70. Heckers S, Curran T, Goff D, Rauch SL, Fischman, Alpert NM, Schacter DL (2000) Abnormalities in the thalamus and prefrontal cortex during episodic object recognition in schizophrenia. Biol Psychiatry 48: 651–657PubMedGoogle Scholar
  71. Heinsen H, Gössman E, Rüb U et al. (1996) Variabilty in the human entorhinal region may confound neuropsychiatric diagnoses. Acta Anat 157: 226–237PubMedGoogle Scholar
  72. Heinsen H, Gössmann E, Rüb U et al. (1996) Variability in the human entorhinal region may confound neuropsychiatric diagnoses. Acta Anat 157: 226–237PubMedGoogle Scholar
  73. Hempel KJ (1958) Histopathologische Untersuchungen an Supranucleus medio-dorsalis thalami bei Schizophrenie. J Hirnforsch 4: 205–253PubMedGoogle Scholar
  74. Hempel KJ, Treff WM (1959) Über „normale Lücken“ und „pathologische Lückenbildungen” in einem subcorticalen Griseum (mediodorsaler Thalamuskern). Beitr Pathol Anat 121: 287–300Google Scholar
  75. Hess WR (1949) Das Zwischenhirn. Schwabe, BaselGoogle Scholar
  76. Heyck H (1954) Kritischer Beitrag zur Frage anatomischer Veränderungen im Thalamus bei Schizophrenie. Monatsschr Psychiatr Neurol 128: 106–128PubMedGoogle Scholar
  77. Hillbom E (1951) Schizophrenia-like psychoses after brain trauma. Acta Psychiatr Neurol Scand 60: 36–47Google Scholar
  78. Hopf A (1954) Orientierende Untersuchungen zur Frage pathoanatomischer Veränderungen im Pallidum und Striatum bei Schizophrenie. J Hirnforsch 1: 97–145Google Scholar
  79. Huber G (1961) Chronische Schizophrenie. Synopsis klinischer und neuroradiologischer Untersuchungen an defektschizophrenen Anstaltspatienten. Einzeldarstellungen aus der theoratischen und klinischen Medizin, Bd 13. Hüthig, HeidelbergGoogle Scholar
  80. Ibrahim HM, Hogg AJ, Healy DJ, Haroutunian V, Davis KL, Meador-Woodruff JH (2000) Jonotropic glutamat receptor binding and subunit mRNA expression in thalamic nuclei of schizophrenia. Am J Psychiatry 157: 1811–1823PubMedGoogle Scholar
  81. Ingvar DH, Franzen G (1974) abnormalies of cerebral blood flow distribution in patients with chronic schizophrenia. Acta Psychiatr Scand 50: 425–462Google Scholar
  82. Jakob J, Beckmann H (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transmiss 65: 303–326Google Scholar
  83. Johnstone EC, Crow TJ, Frith CD, Husband J, Kreel L (1976) Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet 2: 924–926PubMedGoogle Scholar
  84. Jones EG, Powell TPS (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93: 793–820PubMedGoogle Scholar
  85. Jönsson SA, Luts A, Guldberg-Kjaer N, Brun A (1997) Hippocampal pyramidal cell disarray correlates negatively to cell number: implications for the pathogenesis of schizophrenia. Eur Arch Psychiatry Clin Neurosci 247: 120–127PubMedGoogle Scholar
  86. Kalus P, Senitz D (1996) Parvalbumin in the human anterior cingulate cortex. Morphological heterogeneity of inhibitory interneurons. Brain Res 729: 45–54Google Scholar
  87. Katsetos CD, Hyde TM, Herman MM (1997) Neuropathology of the cerebellum in schizophrenia–An update: 1996 and future directions. Biol Psychiatry 42: 213–224PubMedGoogle Scholar
  88. Kegeles LS, Humaran TJ, Mann JJ (1998) In vivo neurochemistry of the brain in schizophrenia as revealed by magnetc resonance spectroscopy. Biol Psychiatry 44: 382398Google Scholar
  89. Kozlovsky N, Belmaker RH, Agam G (2000) Low GSK-3/3 immunoreactivity in postmortem frontal cortex of schizophrenic patients. Am J Psychiatry 157: 831–833PubMedGoogle Scholar
  90. Krimer LS, Herman MM, Saunders RC et al. (1997) A quantitative and qualitative analysis of the entorhinal cortex in schizophrenia. Cereb Cortex 7: 732–739PubMedGoogle Scholar
  91. Lawrie SM, Abukmeil SS (1998) Brain Abnormality in schizophrenia. Br J Psychiatry 172: 110–120PubMedGoogle Scholar
  92. Lawrie SM, Abukmeil SS, Chiswick A, Egan V, Santosh CG, Best JJ (1997) Qualitative cerebral morpology in schizophrenia a magnetic resonance imaging study and systematic literature review. Schizophr Res 25: 155–166PubMedGoogle Scholar
  93. Lawrie SM, Whalley H, Kestelman JN et al. (1999) Magnetic resonance imaging of brain in people at high risk of developing schizophrenia. Lancet 353: 30–33PubMedGoogle Scholar
  94. Lesch A, Bogerts B (1984) The diencephalon in schizophrenia: Evidence for reduced thickness of periventricular grey matter. Eur Arch Psychiatr Neurol Sci 234: 212–219Google Scholar
  95. Lewis SW (1995) The secondary schizophrenias. In: Hirsch S, Weinberger DR (eds) Schizophrenia. Blackwell, Oxford, pp 324–340Google Scholar
  96. Lewis DA, Pierry JN, Volk DW, Melchitzky DS, Woo TUW (1999) Altered GABA neurotransmission and prefrontal cortical dysfunction in schizophrenia. Biol Psychiatry 46: 616–626PubMedGoogle Scholar
  97. Lieberman J, Bogerts B, Degreef, G,Ashtari M, Alvir J (1992) Qualitative assessment of brain morphology in acute and chronic schizophrenia. Am J Psychiatry 149: 784–791Google Scholar
  98. Malamud M (1967) Psychiatric disorder with intracranial tumors of the limbic system. Arch Neurol 17: 113–123PubMedGoogle Scholar
  99. McCarley RW, Hsiao JK, Freedman R, Pfefferbaum A, Donchin E (1996) Neuroimaging and the cognitive neuroscience of schizophrenia. Schizophr Bull 22: 703–725PubMedGoogle Scholar
  100. McLardy (1974) Hippocampal zinc and structural deficit in brains from chronic alcoholics and some schizophrenics. J Orthomol Psychiatry 4: 32–36Google Scholar
  101. McLean PD (1952) Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain). Electroencephalogr Clin Neurophysiol 4: 407–418Google Scholar
  102. Mesulam MM (1986) Patterns in behavioral neuroanatomy: association areas, the limbic system, and hemispheric specialization. In: Mesulam MM (ed) Principles of behavioral neurology. Davis, Philadelphia, pp 1–70Google Scholar
  103. Miller EK (1999) The prefrontal cortex: complex neural properties for complex behavior. Neuron 22: 15–17PubMedGoogle Scholar
  104. Millner R (1992) Cortico-hippocampal interplay and the representation of contexts in the brain. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  105. Mulder DW, Daly D (1952) Psychiatric symptoms associated with lesions of the temporal lobe. JAMA 150: 173–176Google Scholar
  106. Nasrallah HA, Olson SC, McCalley-Witters M, Chapman S, Jacoby CG (1986) Cerebral ventricular enlargement in schizophrenia: A preliminary follow-up study. Arch Gen Psychiatry 43: 157–159Google Scholar
  107. Nelson MD, Saykin AJ, Flashman LA, Riordan HJ (1998) Hippocampal volume reduction in schizophrenia as assessed by magentic resonance imaging. Arch Gen Psychiatry 55: 433–440PubMedGoogle Scholar
  108. Newman NJ, Bell IR, McKee AC (1990) Paraneoplastic limbic encephalitis:neuropsychiatric presentation. Biol Psychiatry 27: 529–542PubMedGoogle Scholar
  109. Northoff G, Waters H, Mooren I, Schlüter U, Diekmann S, Falkai P, Bogerts B (1999) Cortical sulcal enlargement in catatonic schizophrenia: a planimetric CT study. Psychiatry Res Neuroimag 91: 45–54Google Scholar
  110. Olney JW, Farber NB (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52: 998–1007PubMedGoogle Scholar
  111. Pakkenberg B (1990) Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch Gen Psychiatry 47: 1023–1028PubMedGoogle Scholar
  112. Pakkenberg B (1992) The volume of the mediodorsal thalamic nucleus in treated and untreated schizophrenics. Schizophr Res 7: 95–100PubMedGoogle Scholar
  113. Palkovits M, Zaborski L (1979) Neural connections of the hypothalamus. In: Morgane PJ (ed) Anatomy of the hypothalamus. Decker, New York, pp 379–509Google Scholar
  114. Perez MM, Trimble MR, Reider I, Murray M (1984) Epileptic psychosis, a further evaluation of PSE profiles. Br J Psychiatry 146: 155–163Google Scholar
  115. Peters G (1967) Neuropathologie and Psychiatrie. In: Gruhle HW, Jung R, Mayer-Gross W, Müller M (Hrsg) Psychiatrie der Gegenwart, Bd I/1A. Springer, Berlin Heidelberg New York Tokyo, pp 286–298Google Scholar
  116. Pierry JN, Chaudry AS, Woo TUW, Lewis DA (1999) Alterations in chandelier neuron axon terminals in the prefrontal cortex of schizophrenic subjects. Am J Psychiatry 156: 1709–1719Google Scholar
  117. Raz S (1993) Structural cerebral pathology in schizophrenia: Regional or diffuse ? J Abnorm Psychol 102: 445–452PubMedGoogle Scholar
  118. Sauer H, Volz HP (2000) Functional magnetic resonance imaging and magnetic resonance spectroscopy in schizophrenia. Curr Opin Psychiatry 13: 21–26Google Scholar
  119. Scheibel AB, Kovelman JA (1981) Disorientation of the hippocampal pyramidal cells and its processes in the schizophrenic patient. Biol Psychiatry 16: 101–102Google Scholar
  120. Schlaepfer TE, Harris GJ, Tien AY et al. (1994) Decreased regional cortical gray matter volume in schizophrenia. Am J Psychiatry 151: 842–848PubMedGoogle Scholar
  121. Selemon LD, Rajkowska PS, Goldman-Rakic PS (1995) Abnormally high neuronal density in the schizophrenic cortex. A morphometric anaysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry 52: 805–818PubMedGoogle Scholar
  122. Selemon LD, Godman-Rakic PS (1999) The reduced neuropil hypothesis: A circuit based model of schizophrenia. Biol Psychiatry 45: 17–25Google Scholar
  123. Selemon LD, Lodow MS, Goldman-Rakic PS (1999) Incrased volume and glial density in primate prefrontal cortex associated with chronic antipsychotic drug exposure. Biol Psychiatry 46: 161–172PubMedGoogle Scholar
  124. Senitz D, Winkelmann E (1991) Neuronale Struktur-Anomalität im orbitofrontalen Cortex bei Schizophrenie. J Hirnforsch 32: 149–158PubMedGoogle Scholar
  125. Shapiro RM (1993) Regional neuropathology in schizophrenia: Where are we? Where are we going? Schizophr Res 10: 187–239PubMedGoogle Scholar
  126. Slater E, Beard AW, Glithero E (1963) The schizophrenia-like psychosis of epilepsy. Br J Psychiatry 109: 95–150PubMedGoogle Scholar
  127. Smith EE, Jonides J (1999) Storage and executive processes in the frontal lobes. Science 283: 1657–1661PubMedGoogle Scholar
  128. Southard EE (1915) On the topographic distribution of cortex lesionsand abnormalities in dementia praecox wih some account of their functional significance. Am J Insanity 71: 603–671Google Scholar
  129. Staal WG, Hulshoff Pol HE, Schnack H, Van der Schot AC, Kahn RS (1998) Partial volume decrease of the thalamus in relatives of patients with schizophrenia. Am J Psychiatry 155: 1784–1786PubMedGoogle Scholar
  130. Stevens AA, Goldmann-Rakic PS, Gore JC, Fulbright RK, Wexler BE (1998) Cortical dysfunction in schizophrenia during auditory word and tone working memory demonstrated by functional magnetic resonance imaging. Arch Gen Psychiatry 55: 10971103Google Scholar
  131. Swanson LW (1983) The hippocampus and the concept of limbic system. In: Seifert W (ed) Neurobiology of the hippocampus. Academic Press, London, pp 3–19Google Scholar
  132. Travis MJ, Kerwin R (1997) Schizophrenia - Neuroimaging. Curr Opin Psychiatry 10: 16–25 van Hoesen GW (1982) The parahippocampal gyrus. New observations regarding its cortical connections in the monkey. Trends Neurosci 5: 345–350Google Scholar
  133. van Os J, Fahy A, Jones P et al. (1995) Increased intracerebral cerebrospinal fluid spaces predict unemployment and negative symptoms in psychotic illness–a prospective study. Br J Psychiatry 166: 750–758Google Scholar
  134. Vita A, Saccetti G, Cazullo CL (1988) Brain morphology in schizophrenia: A 2-to 5-year CT scan follow-up study. Acta Psychiatr Scand 78: 618–621PubMedGoogle Scholar
  135. Vogeley K, Schneider-Axmann, Pfeiffer U, Tepest R, Bayer T, Bogerts B, Honer W, Falkai P (2000) Disturbed gyrification of the prefrontal region in male schizophrenic patients: a morphometric postmortem study. Am J Psychiatry 157: 34–39PubMedGoogle Scholar
  136. Vogt C, Vogt O (1948) Über anatomische Substrate. Bemerkungen zu pathoanatomischen Befunden bei Schizophrene. Ärztl Forsch 3: 1–7Google Scholar
  137. Vogt C, Vogt 0 (1952) Résultats de l’étude anatomique de la schizophrénie et d’autres psychoses dites fonctionelles faite à I’institut du cerveau de Neustadt, Schwarzwald. In: Proc 1st Int Congr Neuropathol, vol 1. Rosenberg und Sellier, Turin, pp 515–532Google Scholar
  138. Volz HP, Gaser C, Hager F et al. ( 1997 Bain activation during cognitive stimulation with the Wisconson Card Sorting Test: A functional MRI study on healthy volunteers and schizophrenics. Psychiatry Res 31: 145–157Google Scholar
  139. Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44: 660–669PubMedGoogle Scholar
  140. Weinberger DR, Berman KF, Zec RF (1986) Physiologic dysfunction of the dorsolateral prefrontal cortex in schizophrenia: I. Regional cerebral blood flow evidence. Arch Gen Psychiatry 43: 114–124Google Scholar
  141. Weinberger DR, Berman KF, Suddath R, Torrey EF (1992) Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: A magnetic resonance imaging and regional cerebral blood flow study of discordant monocygotic twins. Am J Psychiatry 149: 890–897Google Scholar
  142. Woo TU, Miller JL, Lewis DA (1997) Schizophrenia and the Parvalbumin-containing class of cortical local circuit neurons. Am J Psychiatry 154: 1013–1015PubMedGoogle Scholar
  143. Woo TU, Whitehead RE, Melchitzky DS, Lewis DA (1998) A subclass of prefrontal gammaaminobutyric acid axon terminals are seletively altered in schizophrenia. Proc Natl Acad Sci USA 93: 5341–5346Google Scholar
  144. Woodruff PWR, Wright IC, Shuriquie N et al. (1997) Strutural brain abnormalities in male schizophrenics reflect fronto-temporal dissociation. Psychol Med 27: 1257–1266PubMedGoogle Scholar
  145. Woods BT (1998) Is schizophrenia a progressive neurodevelopmental disorder? Toward a unitary pathogenetic mechanism. Am J Psychiatry 155: 1661–1670PubMedGoogle Scholar
  146. Woods BT, Yurgelun-Todd D, Benes FM, Frankenburg FR, Pope HG, MCSparren J (1990) Progressive ventricular enlargement in schizophrenia: Comparison to bipolar affective disorder and correlation with clinical course. Biol Psychiatry 27: 341–352Google Scholar
  147. Wright IC, Rabe-Hesketh SR, Woodruff PWR, David AS, Murray RM, Bullmore ET (2000)Google Scholar
  148. Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry 157: 16–25Google Scholar
  149. Young KA, Manaye KF, Liang CL, Hicks PB, German DC (2000) Reduced number of mediodorsal and anterior thalamic neurons in schizophrenia. Biol Psychiatry 47: 944–953PubMedGoogle Scholar
  150. Zipurski RB, Marsh L, Lim KO et al. (1994) Volumetric assessment of temporal lobe structures in schizophrenia. Biol Psychiatry 35: 501–516Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • B. Bogerts

There are no affiliations available

Personalised recommendations