Advertisement

Frontalhirn pp 49-88 | Cite as

Neuropsychologie

  • A. Danek

Zusammenfassung

Zu Recht wird vor „frontaler Lobologie“ als „neuer Pseudowissenschaft der Psychiatrie“ gewarnt (David 1992), wenn man beobachtet, wie häufig eine Störung im Frontalhirn unterstellt wird, ohne dass strukturelle Nachweise vorliegen (Dubois et al. 2000). Oft werden Symptome auch nur als statistische Effekte bei Patienten mit heterogenen frontalen Läsionen beschrieben, ohne dass angegeben werden kann, wie ein Befund im Einzelfall zu werten ist.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abe K, Inokawa M, Kashiwagi A, Yanagihara T (1998) Amnesia after a discrete basal forebrain lesion. J Neurol Neurosurg Psychiatry 65: 126–130PubMedGoogle Scholar
  2. Adolphs R (1999) Social cognition and the human brain. Trends Cogn Sci 3: 469–479PubMedGoogle Scholar
  3. Alexander MP, Benson DF, Stuss DT (1989) Frontal lobes and language. Brain Lang 37: 656–691PubMedGoogle Scholar
  4. Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, „prefrontal“ and „limbic” functions. Prog Brain Res 85: 119–146PubMedGoogle Scholar
  5. American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders, 4th edn, Text revision. American Psychiatric Association, Washington, DCGoogle Scholar
  6. Amunts K, Schleicher A, Bürgel U, Mohlberg H, Uylings HBM, Zilles K (1999) Broca’s region revisited: Cytoarchitecture and intersubject variability. J Comp Neurol 412: 319–341Google Scholar
  7. Anderson SW, Damasio H, Jones RD, Tranel D (1991) Wisconsin Card Sorting Test performance as a measure of frontal lobe damage. J Clin Exp Neuropsychol 13: 909–922PubMedGoogle Scholar
  8. Baddeley A (1996) The fractionation of working memory. Proc Natl Acad Sci USA 93: 13468–13472PubMedGoogle Scholar
  9. Baddeley A (1998) The central executive: A concept and some misconceptions. J Int Neuropsychol Soc 4: 523–526PubMedGoogle Scholar
  10. Baddeley A, Della Sala S, Papagno C, Spinnler H (1997) Dual-task performance in dysexecutive and nondysexecutive patients with a frontal lesion. Neuropsychology 11: 187–194PubMedGoogle Scholar
  11. Bäumler G (1984) Farbe-Wort-Interferenztest (FWIT) nach J. R. Stroop. Hogrefe, GöttingenGoogle Scholar
  12. Barth A, Küfferle B (2001) Die Entwicklung eines Sprichworttests zur Erfassung konkretistischer Denkstörungen bei schizophrenen Patienten. Nervenarzt 72: 853–858PubMedGoogle Scholar
  13. Bechara A, Damasio H, Damasio AR (2000) Emotion, decision making and the orbitofrontal cortex. Cereb Cortex 10: 295–307PubMedGoogle Scholar
  14. Beversdorf DQ, Heilman KM (1998) Facilitory paratonia and frontal lobe functioning. Neurology 51: 968–971PubMedGoogle Scholar
  15. Blanke O, Spinelli L, Thut G, Michel CM, Perrig S, Landis T, Seeck M (2000) Location of the human frontal eye field as defined by electrical cortical stimulation: Anatomical, functional and electrophysiological characteristics. Neuroreport 11: 1907–1913Google Scholar
  16. Blok BF, Willemsen AT, Holstege G (1997) A PET study on brain control of micturition in humans. Brain 120: 111–121PubMedGoogle Scholar
  17. Blumer D, Benson DF (1975) Personality changes with frontal and temporal lobe lesions. In: Benson DF, Blumer D (eds) Psychiatric aspects of neurological disease. Grune and Stratton, New York, pp 151–70Google Scholar
  18. Borsutzky S, Brand M, Fujiwara E (2000) Basal forebrain amnesia. Neurocase 6: 377–391Google Scholar
  19. Böttger S, Prosiegel M, Steiger HJ,Yassouridis A (1998) Neurobehavioural disturbances, rehabilitation outcome, and lesion site in patients after rupture and repair of anterior communicating artery aneurysm. J Neurol Neurosurg Psychiatry 65: 93–102Google Scholar
  20. Brazzelli M, Colombo N, Della Sala S, Spinnler H (1994) Spared and impaired cognitive abilities after bilateral frontal damage. Cortex 30: 27–51PubMedGoogle Scholar
  21. Brion S, Jedynak C-P (1972) Troubles du transfert interhémisphérique (callosal disconnection). A propos de trois observations de tumeurs du corps calleux. Le signe de la main étrangère. Rev Neurol (Paris) 126: 257–266Google Scholar
  22. Brodmann K (1908) Beiträge zur histologischen Lokalisation der Großhirnrinde. VI. Mitteilung. Die Cortexgliederung des Menschen. J Psychol Neurol (Leipzig) 10: 231–246Google Scholar
  23. Buccino G, Binkofski F, Fink GR et al. (2001) Action observation activates premotor and parietal areas in a somatotopic manner: An fMRI study. Eur J Neurosci 13: 400–404Google Scholar
  24. Burgess PW (2000) Strategy application disorder: the role of the frontal lobes in human multitasking. Psychol Res 63: 279–288PubMedGoogle Scholar
  25. Burgess PW, Shallice T (1996) Response suppression, initiation and strategy use following frontal lobe lesions. Neuropsych 34: 263–272Google Scholar
  26. Burruss JW, Hurley RA, Taber KH, Rauch RA, Norton RE, Hayman LA (2000) Functional neuroanatomy of the frontal lobe circuits. Radiology 214: 227–230PubMedGoogle Scholar
  27. Carlin D, Bonerba J, Phipps M, Alexander G, Shapiro M, Grafman J (2000) Planning impairments in frontal lobe dementia and frontal lobe lesion patients. Neuropsych 38: 655–665Google Scholar
  28. Chevignard M, Pillon B, Pradat-Diehl P, Taillefer C, Rousseau S, Le Bras C, Dubois B (2000) An ecological approach to planning dysfunction: Script execution. Cortex 36: 649–669Google Scholar
  29. Chiavaras MM, Petrides M (2000) Orbitofrontal sulci of the human and macaque monkey brain. J Comp Neurol 422: 35–54PubMedGoogle Scholar
  30. Corbetta M (1998) Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? Proc Natl Acad Sci USA 95: 831–838PubMedGoogle Scholar
  31. Cramon DY von, Matthes-von Cramon G (1995) Problemlösendes Denken. In: Cramon DY von, Mai N, Ziegler W (Hrsg) Neuropsychologische Diagnostik, 2. Aufl. Chapman and Hall, Weinheim, 123–152Google Scholar
  32. Cummings JL (1993) Frontal-subcortical circuits and human behavior. Arch Neurol 50: 873–880PubMedGoogle Scholar
  33. Damasio AR (1995) Descartes’ Error. Emotion, reason, and the human brain. Avon Books, New YorkGoogle Scholar
  34. Daum I, Schugens MM, Spieker S, Poser U, Schönle PW, Birbaumer N (1995) Memory and skill acquisition in Parkinson’s disease and frontal lobe dysfunction. Cortex 31: 413–432PubMedGoogle Scholar
  35. David AS (1992) Frontal lobology–Psychiatry’s new pseudoscience. Br J Psychiatry 161: 244–248PubMedGoogle Scholar
  36. Davidson RJ, Irwin W (1999) The functional neuroanatomy of emotion and affective style. Trends Cogn Sci 3: 11–21PubMedGoogle Scholar
  37. Davidson RJ, Putnam KM, Larson CL (2000) Dysfunction in the neural circuitry of emotion regulation–A possible prelude to violence. Science 289: 591–594PubMedGoogle Scholar
  38. De Renzi E, Barbieri C (1992) The incidence of the grasp reflex following hemispheric lesion and its relation to frontal damage. Brain 115: 293–313PubMedGoogle Scholar
  39. Degos JD, da Fonseca N, Gray F, Cesaro P (1993) Severe frontal syndrome associated with infarcts of the left anterior cingulate gyrus and the head of the right caudate nucleus. A clinico-pathological case. Brain 116: 1541–1548Google Scholar
  40. Delis DC, Squire LR, Bihrle A, Massman P (1992) Componential analysis of problem-solving ability: Performance of patients with frontal lobe damage and amnesic patients on a new sorting test. Neuropsych 30: 683–697Google Scholar
  41. Della Sala S, Marchetti C, Spinnler H (1994) The anarchic hand: A fronto-mesial sign. In: Grafman J, Boller F (eds) Handbook of neuropsychology, vol 9. Elsevier, Amsterdam, pp 233–255Google Scholar
  42. Dimitrov M, Granetz J, Peterson M, Hollnagel C, Alexander G, Grafman J (1999) Associative learning impairments in patients with frontal lobe damage. Brain Cogn 41: 213–230PubMedGoogle Scholar
  43. Drewe EA (1975) An experimental investigation of Luria’s theory on the effects of frontal lobe lesions in man. Neuropsych 13: 421–429Google Scholar
  44. Dubois B, Slachevsky A, Litvan I, Pillon B (2000) The FAB: A frontal assessment battery at bedside. Neurology 55: 1621–1626Google Scholar
  45. Eslinger PJ, Damasio AR (1985) Severe disturbance of higher cognition after bilateral frontal lobe ablation: Patient EVR. Neurology 35: 1731–1741Google Scholar
  46. Eslinger PJ, Grattan LM (1993) Frontal lobe and frontal-striatal substrates for different forms of human cognitive flexibility. Neuropsych 31: 17–28Google Scholar
  47. Eslinger PJ, Warner GC, Grattan LM, Easton JD (1991) „Frontal lobe“ utilization behavior associated with paramedian thalamic infarction. Neurology 41: 450–452Google Scholar
  48. Ettlin TM, Kischka U, Beckson M, Gaggiotti M, Rauchfleisch U, Benson DF (2000) The frontal lobe score. Part I: Construction of a mental status of frontal systems. Clin Rehab 14: 260–271Google Scholar
  49. Foerster O (1936) Motorische Felder and Bahnen. In: Bumke O, Foerster O (Hrsg) Handbuch der Neurologie, Bd 6. Springer, Berlin, S 1–352Google Scholar
  50. Freedman M, Alexander MP, Naeser MA (1984) Anatomic basis of transcortical motor aphasia. Neurology 34: 409–417PubMedGoogle Scholar
  51. Freund HJ, Hummelsheim H (1985) Lesions of premotor cortex in man. Brain 108: 697–733PubMedGoogle Scholar
  52. Fuster JM (1997) The prefrontal cortex: Anatomy, physiology, and neuropsychology of the frontal lobe, 3rd edn. Lippincott-Raven, PhiladelphiaGoogle Scholar
  53. Fuster JM (2000) Prefrontal neurons in networks of executive memory. Brain Res Bull 52: 331–336PubMedGoogle Scholar
  54. Gallese V, Goldman A (1998) Mirror neurons and the simulation theory of mind-reading. Trends Cogn Sci 2: 493–501PubMedGoogle Scholar
  55. Gazzaniga MS, Ivry RB, Mangun GR (1998) Cognitive neuroscience. The biology of the mind. Norton, New YorkGoogle Scholar
  56. Goel V, Dolan RJ (2000) Anatomical segregation of component processes in an inductive inference task. J Cogn Neurosci 12: 110–119PubMedGoogle Scholar
  57. Goel V, Grafman J (1995) Are the frontal lobes implicated in planning functions? Interpreting data from the Tower of Hanoi. Neuropsych 33: 623–642Google Scholar
  58. Goel V, Grafman J (2000) Role of the right prefrontal cortex in ill-structured planning. Cogn Neuropsychol 17: 415–436PubMedGoogle Scholar
  59. Goel V, Grafman J, Tajik J, Gana S, Danto D (1997) A study of the performance of patients with frontal lobe lesions in a financial planning task. Brain 120: 1805–1822PubMedGoogle Scholar
  60. Goel V, Büchel C, Frith C, Dolan RJ (2000) Dissociation of mechanisms underlying syllogistic reasoning. Neuroimage 12: 504–514PubMedGoogle Scholar
  61. Goldenberg G, Schuri U, Grömminger O, Arnold U (1999) Basal forebrain amnesia: Does the nucleus accumbens contribute to human memory? J Neurol Neurosurg Psychiatry 67: 163–168PubMedGoogle Scholar
  62. Goldman-Rakic P (2000) Localization of function all over again. Neuroimage 11: 451–457PubMedGoogle Scholar
  63. Gómez Beldarrain M, Grafman J, Pascual-Leone A, Garcia-Monco JC (1999) Procedural learning is impaired in patients with prefrontal lesions. Neurology 52: 1853–1860PubMedGoogle Scholar
  64. Grace J, Stout JC, Malloy PF (1999) Assessing frontal lobe behavioral syndromes with the frontal lobe personality scale. Assessment 6: 269–284PubMedGoogle Scholar
  65. Grafman J (1995) Similarities and distinctions among current models of prefrontal cortical functions. Ann N Y Acad Sci 769: 337–368PubMedGoogle Scholar
  66. Grafman J (1999) Experimental assessment of adult frontal lobe function. In: Miller BL, Cummings JL (eds) The human frontal lobes: Functions and disorders. Guilford, New York, pp 321–344Google Scholar
  67. Grafman J, Litvan I (1999) Importance of deficits in executive functions. Lancet 354: 1921–1923PubMedGoogle Scholar
  68. Grafman J, Partiot A, Hollnagel C (1995) Fables of the prefrontal cortex. Behav Brain Sci 18: 349–358Google Scholar
  69. Grosbras MH, Lobel E, Moortele PF van de, LeBihan D, Berthoz A (1999) An anatomical landmark for the supplementary eye fields in human revealed with functional magnetic resonance imaging. Cereb Cortex 7: 705–711Google Scholar
  70. Hashimoto R, Tanaka Y (1998) Contribution of the supplementary motor area and anterior cingulate gyrus to pathological grasping phenomena. Eur Neurol 40: 151–158PubMedGoogle Scholar
  71. Hashimoto R, Tanaka Y, Nakano I (2000) Amnesic confabulatory syndrome after focal basal forebrain damage. Neurology 54: 978–980PubMedGoogle Scholar
  72. Hornak J, Rolls ET, Wade D (1996) Face and voice expression identification in patients with emotional and behavioural changes following ventral frontal lobe damage. Neuropsych 34: 247–261Google Scholar
  73. Husain M, Kennard C (1996) Visual neglect associated with frontal lobe infarction. J Neurol 243: 652–657PubMedGoogle Scholar
  74. Jacobs L, Gossman MD (1980) Three primitive reflexes in normal adults. Neurology 30: 184–188PubMedGoogle Scholar
  75. Janowsky JS, Shimamura AP, Squire LR (1989) Source memory impairment in patients with frontal lobe lesions. Neuropsychologia 27: 1043–1056PubMedGoogle Scholar
  76. Jetter W, Poser U, Freeman RBJ, Markowitsch HJ (1986) A verbal long term memory deficit in frontal lobe damaged patients. Cortex 22: 229–242PubMedGoogle Scholar
  77. Jones-Gotman M, Milner B (1977) Design fluency: The invention of nonsense drawings after focal cortical lesions. Neuropsych 15: 653–674Google Scholar
  78. Jurado MA, Junque C, Vendrell P, Treserras P, Grafman J (1998) Overestimation and unreliability in feeling-of-doing judgements about temporal ordering performance: impaired self-awareness following frontal lobe damage. J Clin Exp Neuropsychol 20: 353–364PubMedGoogle Scholar
  79. Kertesz A (1998) The quantification of behavior in frontal lobe dementia. In: Kertesz A, Munoz D (eds) Pick’s disease and Pick complex. Wiley-Liss, New York, pp 47–67Google Scholar
  80. Kesner RP, Hopkins RO, Fineman B (1994) Item and order dissociation in humans with prefrontal cortex damage. Neuropsych 32: 881–891Google Scholar
  81. Klüver H, Bucy PC (1997) Preliminary analysis of functions of the temporal lobes in monkeys. J Neuropsychiatry Clin Neurosci 9: 606–620PubMedGoogle Scholar
  82. [Nachdruck des Originals von 1939]
    Kremer S, Chassagnon S, Hoffmann D, Benabid AL, Kahane P (2001) The cingulate hidden hand. J Neurol Neurosurg Psychiatry 70: 264–265PubMedGoogle Scholar
  83. Kroll NE, Markowitsch HJ, Knight RT, von Cramon DY (1997) Retrieval of old memories: the temporofrontal hypothesis. Brain 120: 1377–1399PubMedGoogle Scholar
  84. Lesser RP, Lueders H, Dinner DS, Hahn J, Cohen L (1984) The location of speech and writing functions in the frontal language area. Results of extraoperative cortical stimulation. Brain 107: 275–291Google Scholar
  85. Lezak MD (1995) Neuropsychological Assessment, 3rd edn. Oxford University Press, New York OxfordGoogle Scholar
  86. Lhermitte F (1983) Utilization behaviour and its relation to lesions of the frontal lobes. Brain 106: 237–255PubMedGoogle Scholar
  87. Lhermitte F (1986) Human autonomy and the frontal lobes. Part II: Patient behavior in complex and social situations: the Enviromental dependency syndrome. Ann Neurol 19: 335–343PubMedGoogle Scholar
  88. Lhermitte F, Pillon B, Serdaru M (1986) Human autonomy and the frontal lobes. Part I: Imitation and utilization behavior: a neuropsychological study of 75 patients. Ann Neurol 19: 326–334PubMedGoogle Scholar
  89. Logan GD (1985) Executive control of thought and action. Acta Psychol (Amst) 60: 193–210Google Scholar
  90. Luria AR (1980) Higher cortical functions in man, 2nd edn. Basic Books, New YorkGoogle Scholar
  91. Mac-Leod CM, Mac-Donald PA (2000) Interdimensional interference in the Stroop effect: uncovering the cognitive and neural anatomy of attention. Trends Cogn Sci 4: 383–391Google Scholar
  92. Malloy PF, Richardson ED (1994) Assessment of frontal lobe functions. J Neuropsychiatry Clin Neurosci 6: 399–410PubMedGoogle Scholar
  93. Malloy PF, Webster JS, Russell W (1985) Tests of Luria’s frontal lobe syndromes. Int J Clin Neuropsych 7: 88–95Google Scholar
  94. Markowitsch HJ (1992) Intellectual functions and the brain. An historical perspective. Hogrefe and Huber, SeattleGoogle Scholar
  95. Mavaddat N, Kirkpatrick PJ, Rogers RD, Sahakian BJ (2000) Deficits in decision-making in patients with aneurysms of the anterior communicating artery. Brain 123: 2109–2117PubMedGoogle Scholar
  96. McDonald S, Pearce S (1996) Clinical insights into pragmatic theory: Frontal lobe deficits and sarcasm. Brain Lang 53: 81–104Google Scholar
  97. Mesulam M-M (2001) Primary progressive aphasia. Ann Neurol 49: 425–432PubMedGoogle Scholar
  98. Miller BL, Cummings JL (eds) (1999) The human frontal lobes: functions and disorders. Guilford, New YorkGoogle Scholar
  99. Miller EK (2000) The prefrontal cortex and cognitive control. Nature Rev Neurosci 1: 59–65Google Scholar
  100. Milner B (1982) Some cognitive effects of frontal-lobe lesions in man. Philos Trans R Soc Lond B Biol Sci 298: 211–226PubMedGoogle Scholar
  101. Milner B, Petrides M, Smith ML (1985) Frontal lobes and the temporal organization of memory. Hum Neurobiol 4: 137–142PubMedGoogle Scholar
  102. Mitrushina MN, Boone KB, D’Elia LF (1999) Handbook of normative data for neuropsychological assessment. Oxford University Press, New York OxfordGoogle Scholar
  103. Morris MK, Bowers D, Chatterjee A, Heilman KM (1992) Amnesia following a discrete basal forebrain lesion. Brain 115: 1827–1847PubMedGoogle Scholar
  104. Nagao M, Takeda K, Komori T, Isozaki E, Hirai S (1999) Apraxia of speech associated with an infarct in the precentral gyrus of the insula. Neuroradiol 41: 356–357Google Scholar
  105. Nelson HE (1976) A modified card sorting test sensitive to frontal lobe defects. Cortex 12: 313–324PubMedGoogle Scholar
  106. Nieuwenhuys R, Voogd J, Van Huyzen C (1988) The human central nervous system: A synopsis and atlas. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  107. Öngür D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10: 206–219PubMedGoogle Scholar
  108. O’Shea MF, Saling MM, Bladin PF (1994) Can metamemory be localized? J Clin Exp Neuropsychol 16: 640–646PubMedGoogle Scholar
  109. Owen AM (1997) Cognitive planning in humans: neuropsychological, neuroanatomical and neuropharmacological perspectives. Prog Neurobiol 53: 431–450PubMedGoogle Scholar
  110. Owen AM, Downes JJ, Sahakian BJ, Polkey CE, Robbins TW (1990) Planning and spatial working memory following frontal lobe lesions in man. Neuropsych 28: 1021–1034Google Scholar
  111. Owen AM, Roberts AC, Polkey CE, Sahakian BJ, Robbins TW (1991) Extra-dimensional versus intra-dimensional set shifting performance following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man. Neuropsych 29: 993–1006Google Scholar
  112. Owen AM, Sahakian BJ, Semple J, Polkey CE, Robbins TW (1995) Visuo-spatial short-term recognition memory and learning after temporal lobe excisions, frontal lobe excisions or amygdalo-hippocampectomy in man. Neuropsych 33: 1–24Google Scholar
  113. Parkin AJ (1998) The central executive does not exist. J Int Neuropsychol Soc 4: 518–522PubMedGoogle Scholar
  114. Paus T (1996) Location and function of the human frontal eye-field: A selective review. Neuropsychologia 34: 475–483PubMedGoogle Scholar
  115. Perecman E (ed) (1987) The frontal lobes revisited. IBRN, New YorkGoogle Scholar
  116. Perret E (1974) The left frontal lobe of man and the suppression of habitual responses in verbal categorical behaviour. Neuropsychologia 12: 323–330PubMedGoogle Scholar
  117. Petrides M (1985) Deficits on conditional associative-learning tasks after frontal-and temporal-lobe lesions in man. Neuropsychologia 23: 601–614PubMedGoogle Scholar
  118. Petrides M, Pandya DN (1999) Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 11: 1011–1036PubMedGoogle Scholar
  119. Prabhakaran V, Smith JA, Desmond JE, Glover GH, Gabrieli JD (1997) Neural substrates of fluid reasoning: An fMRI study of neocortical activation during performance of the Raven’s Progressive Matrices Test. Cognit Psychol 33: 43–63Google Scholar
  120. Rabbitt P (ed) (1997) Methodology of frontal and executive function. Psychology Press, Hove, East SussexGoogle Scholar
  121. Rahman S, Sahakian BJ, Hodges JR, Rogers RD, Robbins TW (1999) Specific cognitive deficits in mild frontal variant frontotemporal dementia. Brain 122: 1469–1493PubMedGoogle Scholar
  122. Raven J (2000) The Raven’s Progressive Matrices: Change and stability over culture and time. Cogn Psychol 41: 1–48PubMedGoogle Scholar
  123. Regard M, Strauss E, Knapp P (1982) Children’s production on verbal and non-verbal fluency tasks. Percept Mot Skills 55: 839–844PubMedGoogle Scholar
  124. Rizzolatti G, Arbib MA (1998) Language within our grasp. Trends Neurosci 21:188–194 Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: New concepts. Electroencephalogr Clin Neurophysiol 106: 283–296Google Scholar
  125. Roberts AC, Sahakian BJ (1993) Comparable tests of cognitive function in monkey and man. In: Sahgal A (ed) Behavioural neuroscience: A practical approach. IRL Press, Oxford, pp 165–184Google Scholar
  126. Rogers RD, Sahakian BJ, Hodges JR, Polkey CE, Kennard C, Robbins T (1998) Dissociating executive mechanisms of task control following frontal lobe damage and Parkinson’s disease. Brain 121: 815–842PubMedGoogle Scholar
  127. Rolls ET (2000) The orbitofrontal cortex and reward. Cereb Cortex 10: 284–294PubMedGoogle Scholar
  128. Rolls ET, Hornak J, Wade D, McGrath J (1994) Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. J Neurol Neurosurg Psychiatry 57: 1518–1524PubMedGoogle Scholar
  129. Ropper AH (1982) Self-grasping: A focal neurological sign. Ann Neurol 12: 575–577PubMedGoogle Scholar
  130. Royall DR (1999) EXIT 25 Video. Video, auf Anfrage erhältlich vom Autor (royall@uthscsa.edu)Google Scholar
  131. Royall DR, Mahurin RK, Gray KF (1992) Bedside assessment of executive cognitive impairment: the executive interview. J Am Geriatr Soc 40: 1221–1226PubMedGoogle Scholar
  132. Royall DR, Cordes JA, Polk M (1998) CLOX: an executive clock drawing task. J Neurol Neurosurg Psychiatry 64: 588–594PubMedGoogle Scholar
  133. Ruff RM, Allen CC, Farrow CE, Niemann H, Wylie T (1994) Figural fluency: Differential impairment in patients with left versus right frontal lobe lesions. Arch Clin Neuropsychol 9: 41–55Google Scholar
  134. Schnider A (1997) Verhaltensneurologie. Die neurologische Seite der Neuropsychologie. Thieme, StuttgartGoogle Scholar
  135. Schnider A, Däniken C von, Gutbrod K (1996) The mechanisms of spontaneous and provoked confabulations. Brain 119: 1365–1375PubMedGoogle Scholar
  136. Schnider A, Ptak R (1999) Spontaneous confabulators fail to suppress currently irrelevant memory traces. Nat Neurosci 2: 677–681PubMedGoogle Scholar
  137. Shallice T (1982) Specific impairments of planning. Philos Trans R Soc Lond B Biol Sci 298: 199–209PubMedGoogle Scholar
  138. Shallice T, Burgess PW (1991) Deficits in strategy application following frontal lobe damage in man. Brain 114: 727–741PubMedGoogle Scholar
  139. Shallice T, Evans ME (1978) The involvement of the frontal lobes in cognitive estimation. Cortex 14: 294–303PubMedGoogle Scholar
  140. Shallice T, Burgess PW, Schon F, Baxter DM (1989) The origins of utilization behaviour. Brain 112: 1587–1598PubMedGoogle Scholar
  141. Shimamura AP, Janowsky JS, Squire LR (1990) Memory for the temporal order of events in patients with frontal lobe lesions and amnesic patients. Neuropsychologia 28: 803–813PubMedGoogle Scholar
  142. Sirigu A, Zalla T, Pillon B, Grafman J, Dubois B, Agid Y (1995) Planning and script analysis following prefrontal lobe lesions. Ann N Y Acad Sci 769: 277–288PubMedGoogle Scholar
  143. Smith A (1967) The serial sevens subtraction test. Arch Neurol 17: 78–80PubMedGoogle Scholar
  144. Spatt J, Goldenberg G (1993) Components of random generation by normal subjects and patients with dysexecutive syndrome. Brain Cogn 23: 231–242PubMedGoogle Scholar
  145. Spreen O, Strauss E (1998) A compendium of neuropsychological tests. Oxford University Press, New York OxfordGoogle Scholar
  146. Stuss DT, Eskes GA, Foster JK (1994) Experimental neuropsychological studies of frontal lobe functions. In: Grafman J, Boller F (eds) Handbook of Neuropsychology, vol 9. Elsevier, Amsterdam, pp 149–185Google Scholar
  147. Tehovnik EJ, Sommer MA, Chou IH, Slocum WM, Schiller PH (2000) Eye fields in the frontal lobes of primates. Brain Res Brain Res Rev 32: 413–448PubMedGoogle Scholar
  148. Tewes U (1991) HAWIE-R: Hamburg-Wechsler Intelligenztest für Erwachsene. Huber, BernGoogle Scholar
  149. Turken AU, Swick D (1999) Response selection in the human anterior cingulate cortex. Nature Neurosci 2: 920–924PubMedGoogle Scholar
  150. Vanneste JA (2000) Diagnosis and management of normal-pressure hydrocephalus. J Neurol 247: 5–14PubMedGoogle Scholar
  151. Verfallie M, Heilman KM (1987) Response preparation and response inhibition after lesions of the medial frontal lobe. Arch Neurol 44: 1265–1271Google Scholar
  152. Vreeling FW, Jones J, Verhey FR, Houx PJ (1993) Primitive reflexes in healthy, adult volunteers and neurological patients: Methodological issues. J Neurol 240: 495–504Google Scholar
  153. Waltz JA, Knowlton BJ, Holyoak KJ et al. (1999) A system for relational reasoning in human prefrontal cortex. Psychol Sci 10: 119–125Google Scholar
  154. Warrington EK (2000) Homophone meaning generation: A new test of verbal switching for the detection of frontal lobe dysfunction. J Int Neuropsychol Soc 6: 643–648PubMedGoogle Scholar
  155. Weller M (1993) Anterior opercular cortex lesions cause dissociated lower cranial nerve palsies and anarthria but no aphasia: Foix-Chavany-Marie syndrome and „automatic voluntary dissociation“ revisited. J Neurol 240: 199–208PubMedGoogle Scholar
  156. Wharton C, Grafman J (1998) Deductive reasoning and the brain. Trends Cogn Sci 2: 54–59 Wheeler MA, Stuss DT, Tulving E (1995) Frontal lobe damage produces episodic memory impairment. J Int Neuropsychol Soc 1: 525–536Google Scholar
  157. Wiegersma S, van der Scheer E, Human R (1990) Subjective ordering, short-term memory, and the frontal lobes. Neuropsychologia 28: 95–98PubMedGoogle Scholar
  158. Wieshmann UC, Niehaus L, Meierkord H (1997) Ictal speech arrest and parasagittal lesions. Eur Neurol 38: 123–127PubMedGoogle Scholar
  159. Wildgruber D (1997) Evaluation und Optimierung eines ökonomischen Testverfahrens zur Erfassung von Funktionsstörungen des Frontalhirns. Med. Dissertation, Universität HeidelbergGoogle Scholar
  160. Wildgruber D, Kischka U, Fassbender K, Ettlin TM (2000) The Frontal Lobe Score. Part II: Evaluation of its clinical validity. Clin Rehab 14: 272–278Google Scholar
  161. Wilson BA, Alderman N, Burgess PW, Emslie H, Evans JJ (1996) Behavioural assessment of the dysexecutive syndrome. Thames Valley Test Company, Bury St. EdmundsGoogle Scholar
  162. Ziegler W, Kilian B, Deger K (1997) The role of the left mesial frontal cortex in fluent speech: evidence from a case of left supplementary motor area hemorrhage. Neuropsychologia 35: 1197–1208PubMedGoogle Scholar
  163. Zimmermann P, Fimm B (1993) Testbatterie zur Aufinerksamkeitsprüfung (TAP), Version 1.02. Psytest, Freiburg/Breisgau (http://www.psytest-fimm.com)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • A. Danek

There are no affiliations available

Personalised recommendations