Frontalhirn pp 19-47 | Cite as

Neurobiologische Grundlagen der Stirnhirnfunktionen

  • O. Gruber
  • T. Arendt
  • D. Y. Von Cramon


Der präfrontale Kortex bildet den Kortex des rostralen Pols der Hirnrinde. Die Kriterien seiner Abgrenzung gegenüber anderen neokortikalen Hirnregionen und damit das Verständnis dessen, was unter dem präfrontalen Kortex verstanden wird, ist historisch mehrfach revidiert worden und somit Ausdruck sich entwickelnder Paradigmen der Stirnhirnfunktion.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akert K (1964) Comparative anatomy of the frontal cortex and thalamocortical connections. In: Warren JM, Akert K (eds) The frontal granular cortex and behaviour. McGraw-Hill, New York, pp 372–396Google Scholar
  2. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 9: 357–381PubMedGoogle Scholar
  3. Alexander GE, Crutcher MD, DeLong MR (1990) Basal gangliothalamocortical circuits: parallel substrates for motor, oculomotor,,,prefrontal“ and „limbic” functions. In: Uylings HBM, Van Eden CG, De Bruin JPC et al. (eds) Progress in brain research, vol 85. Elsevier, Amsterdam, pp 119–146Google Scholar
  4. Arbib MA (1981) Perceptual structures and distributed motor control. In: Brooks VB (ed) Handbook of physiology; nervous system, vol II. American Physiological Society, Bethesda, MD, pp 1448–1480Google Scholar
  5. Arnsten AFT, Goldman-Rakic PS (1984) Selective prefrontal cortical projections to the region of the locus coeruleus and raphe nuclei in the rhesus monkey. Brain Res 306: 6–18Google Scholar
  6. Asaad WF, Rainer G, Miller EK (1998) Neural activity in the primate prefrontal cortex during associative learning. Neuron 21: 1399–1407PubMedGoogle Scholar
  7. Baddeley AD (1992) Working memory. Science 255: 556–559Google Scholar
  8. Baddeley AD, Hitch GJ (1974) Working memory. In: Bower G (ed) Recent advances in learning and motivation, vol VIII. Academic Press, New York, pp 47–90Google Scholar
  9. Bailey P, Bonin G von (1951) The isokortex of man. University Illinois Press, UrbanaGoogle Scholar
  10. Barbas H, Pandya DN (1989) Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J Comp Neurol 286: 353–375PubMedGoogle Scholar
  11. Barbas H, Pandya DN (1991) Patterns of connections of the prefrontal cortex in the rhesus monkey associated with cortical architecture. In: Levin HS, Eisenberg HM, Benton AL (eds) Frontal lobe function and dysfunction. Oxford University Press, New York, pp 35–58Google Scholar
  12. Barbas H, Haswell Henion TH, Dermon CR (1991) Diverse thalamic projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol 313: 65–94PubMedGoogle Scholar
  13. Beckstead RM (1979) An autoradiographic examination of corticocortical and subcortical projections of the mediodorsal-projection (prefrontal) cortex in the rat. J Comp Neurol 184: 43–62PubMedGoogle Scholar
  14. Björklund A, Divac I, Lindvall O (1978) Regional distribution of catecholamines in monkey cerebral cortex. Evidence for a dopaminergic innervation of primate prefrontal cortex. Neurosci Lett 7: 115–199Google Scholar
  15. Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD (2001) Conflict monitoring and cognitive control. Psychol Rev 108 (3): 624–652PubMedGoogle Scholar
  16. Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde. Barth, LeipzigGoogle Scholar
  17. Buechel C, Coull JT, Friston KJ (1999) The predictive value of changes in effective connectivity for human learning. Science 283: 1538–1541Google Scholar
  18. Carter CJ (1982) Topographical distribution of possible glutamatergic pathways from the fron- tal cortex to the striatum and substantia nigra in rats. Neuropharmacology 21: 379–383PubMedGoogle Scholar
  19. Carter CS, Braver TS, Barch DM, Botvinick MM, Noll DC, Cohen JD (1998) Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280: 747–749PubMedGoogle Scholar
  20. Carter CS, MacDonald AM, Botvinick M, Ross LL, Stenger A, Noll D, Cohen JD (2000) Parsing executive processes: Strategic vs. evaluative functions of the anterior cingulate cortex. Proc Nail Acad Sci 97: 1944–1948Google Scholar
  21. Chafee MV, Goldman-Rakic PS (1998) Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J Neurophysiol 79: 2919–2940PubMedGoogle Scholar
  22. Christoff K, Gabrieli JDE (2000) The frontopolar cortex and human cognition: evidence for a rostrocaudal hierarchical organization within the human prefrontal cortex. Psychobiology 28: 168–186Google Scholar
  23. Courtney SM, Petit L, Maisog JM, Ungerleider LG, Haxby JV (1998) An area specialized for spatial working memory in human frontal cortex. Science 279: 1347–1351PubMedGoogle Scholar
  24. Courtney SM, Ungerleider LG, Keil K, Haxby JV (1996) Object and spatial working memory activate separate neural systems in human cortex. Cereb Cortex 6: 39–49PubMedGoogle Scholar
  25. D’Esposito M, Aguirre GK, Zarahn E, Ballard D, Shin RK, Lease J (1998) Functional MRI studies of spatial and nonspatial working memory. Cogn Brain Res 7: 1–13Google Scholar
  26. D’Esposito M, Postle BR, Ballard D, Lease J (1999) Maintenance versus manipulation of information held in working memory: an event-related fMRI study. Brain Cogn 41: 66–86PubMedGoogle Scholar
  27. D’Esposito M, Postle BR, Rypma B (2000a) Prefrontal cortical contributions to working memory: evidence from event-related fMRI studies. Exp Brain Res 133: 3–11PubMedGoogle Scholar
  28. D’Esposito M, Ballard D, Zarahn E, Aguirre GK (2000b) The role of the prefrontal cortex in sensory memory and motor preparation: an event-related fMRI study. Neuroimage 11: 400–408PubMedGoogle Scholar
  29. Deutch AY, Cameron DS (1992) Pharmacological characterization of dopamine systems in the nucleus accumbens core and shell. Neuroscience 6: 49–56Google Scholar
  30. Divac I, Mogenson 1 (1985) The prefrontal „cortex“ in the pigeon. Catecholamine histofluorescence. Neuroscience 15: 677–682Google Scholar
  31. Divac I, Holst MC, Nelson J, McKenzie JS (1987) Afferents of the frontal cortex in the echidna (Tachyglossus aculeatus). Indication of an outstandingly large prefrontal area. Brain Behav Evol 30: 303–320Google Scholar
  32. Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Cogn Sci 23: 475–483Google Scholar
  33. Elliott R, Frith CD, Dolan RJ (1997) Differential neural response to positive and negative feedback in planning and guessing tasks. Neuropsychologia 35: 1395–1404PubMedGoogle Scholar
  34. Fletcher et al. (1995) Other minds in the brain: a functional imaging study of „theory of mind in story comprehension. Cognition 57: 109–128Google Scholar
  35. Friston KJ, Buechel C, Fink GR, Morris J, Rolls E, Dolan RJ (1997) Psychophysiological and modulatory interactions in neuroimaging. Neuroimage 6: 218–229PubMedGoogle Scholar
  36. Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61: 331–349PubMedGoogle Scholar
  37. Funahashi S, Bruce CJ, Goldman-Rakic PS (1990) Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms. J Neurophysiol 63: 814–831PubMedGoogle Scholar
  38. Funahashi S, Bruce CJ, Goldman-Rakic PS (1991) Neuronal activity related to saccadic eye movements in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 65: 14641483Google Scholar
  39. Fuster JM, Jervey JP (1981) Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. Science 212: 952–955PubMedGoogle Scholar
  40. Fuster JM (1989) The prefrontal cortex: Anatomy, physiology and neuropsychology of the frontal lobe. Raven, New YorkGoogle Scholar
  41. Fuster JM, Bauer RH, Jervey JP (1982) Cellular discharge in the dorsolateral prefrontal cortex of the monkey in cognitive tasks. Exp Neurol 77: 679–694PubMedGoogle Scholar
  42. Gerfen CR (1992) The neostriatal mosaic: Multiple levels of compartmental organization. Trends Neurosci 15: 133–139PubMedGoogle Scholar
  43. Gnadt JW, Andersen RA (1988) Memory-related motor planning activity in posterior parietal cortex of macaque. Exp Brain Res 70: 216–220PubMedGoogle Scholar
  44. Goldman-Rakic PS (1987a) Circuitry of primate prefrontal cortex and regulation of behaviour by representational memory. In: Plum F (ed) Handbook of physiology: the nervous system, vol V. American Physiological Society, Bethesda, MD, pp 373–417Google Scholar
  45. Goldman-Rakic PS (1987b) Development of cortical circuitry and cognitive function. Child Dev 58: 601–622PubMedGoogle Scholar
  46. Goldman-Rakic PS (1993) Specification of higher cortical functions. J Head Trauma Rehabil 8 (1): 13–23Google Scholar
  47. Goldman-Rakic PS (1996) The prefrontal landscape: Implications of functional architecture for understanding human mentation and the central executive. Philos Trans R Soc Lond B Biol Sci 351: 1445–1453PubMedGoogle Scholar
  48. Goldman-Rakic PS (2000) Localization of function all over again. Neuroimage 11: 451–457PubMedGoogle Scholar
  49. Goldman-Rakic PS, Porrino LJ (1985) The primate mediodorsal ( MD) nucleus and its projection to the frontal lobe. J Comp Neurol 242: 535–560Google Scholar
  50. Goldman-Rakic PS, Selemon LD, Schwartz ML (1984) Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience 12: 719–743PubMedGoogle Scholar
  51. Goldman-Rakic PS, Funahashi S, Bruce CJ (1990) Neocortical memory circuits. Q J Quant Biol 55: 1025–1038Google Scholar
  52. Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15: 20–25PubMedGoogle Scholar
  53. Gruber O (2000) Two different brain systems underlie phonological short-term memory in humans. Neuroimage 11 /5: S407Google Scholar
  54. Gruber O (2001) Effects of domain-specific interference on brain activation associated with verbal working memory task performance. Cerebral Cortex 11: 1047–1055PubMedGoogle Scholar
  55. Gruber O, Cramon DY von (2001) Domain-specific distribution of working memory processes along human prefrontal and parietal cortices: a functional magnetic resonance imaging study. Neurosci Lett 297: 29–32PubMedGoogle Scholar
  56. Hackett TA, Stepniewska I, Kaas JH (1999) Prefrontal connections of the parabelt auditory cortex in macaque monkeys, Brain Res 817: 45–58PubMedGoogle Scholar
  57. Haxby JV, Petit L, Ungerleider LG, Courtney SM (2000) Distinguishing the functional roles of multiple regions in distributed neural systems for visual working memory. Neuro-image 11: 380–391PubMedGoogle Scholar
  58. Hikosaka O, Wurtz RH (1983) Visual oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. J Neurophysiol 49: 1268–1284Google Scholar
  59. Kievit J, Kuypers HGJM (1977) Organization of the thalamocortical connexions to the frontal lobe in the rhesus monkey. Exp Brain Res 85: 299–322Google Scholar
  60. LaBar KS, Gitelman DR, ParrishTB, Mesulam M-M (1999) Neuroanatomic overlap of working memory and spatial attention networks: A functional MRI comparison within subjects. Neuroimage 10: 695–704Google Scholar
  61. Lane RD, Reiman EM, Bradley MM, Lang PJ, Ahern GL, Davidson RJ, Schwartz GE (1997) Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia 11: 1437–1444Google Scholar
  62. McLean PD (1990) The triune brain in evolution: Role in paleocerebral functions. Plenum, New York, pp 519–563Google Scholar
  63. Mesulam M (1998) From sensation to cognition. Brain 121: 1013–1052PubMedGoogle Scholar
  64. Miller EK (2000a) The prefrontal cortex and cognitive control. Nat Rev 1: 59–65Google Scholar
  65. Miller EK (2000b) The prefrontal cortex: no simple matter. Neuroimage 11: 447–450PubMedGoogle Scholar
  66. Miller EK, Desimone R (1994) Parallel neuronal mechanisms for short-term memory. Science 263: 520–522PubMedGoogle Scholar
  67. Miyashita Y, Chang HS (1988) Neuronal correlate of pictorial short-term memory in the primate temporal cortex. Nature 331: 68–70PubMedGoogle Scholar
  68. Nauta WJH (1971) The problem of the frontal lobe: a reinterpretation. J Psychiatr Res 8: 167–187PubMedGoogle Scholar
  69. Nystrom LE, Braver TS, Sabb FW, Delgado MR, Noll DC, Cohen JD (2000) Working memory for letters, shapes, and locations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex. Neuroimage 11: 424–446PubMedGoogle Scholar
  70. O’Scalaidhe SP, Wilson FAW, Goldman-Rakic PS (1997) Areal segregation of face-processing neurons in prefrontal cortex. Science 278: 1135–1138Google Scholar
  71. O’Scalaidhe SP, Wilson FAW, Goldman-Rakic PS (1999) Face-selective neurons during passive viewing and working memory performance of rhesus monkeys: evidence for intrinsic specialization of neuronal coding. Cereb Cortex 9: 459–475Google Scholar
  72. Owen AM (1997) The functional organization of working memory processes within human lateral frontal cortex: the contribution of functional neuroimaging. Eur J Neurosci 9: 1329–1339PubMedGoogle Scholar
  73. Owen AM (2000) The role of the lateral frontal cortex in mnemonic processing: the contribution of functional neuroimaging. Exp Brain Res 133: 33–43PubMedGoogle Scholar
  74. Owen AM, Lee ACH, Williams EJ (2000) Dissociating aspects of verbal working memory within the human frontal lobe: further evidence for a „process-specific“ model of lateral frontal organization. Psychobiology 28: 146–155Google Scholar
  75. Pandya DN,Yeterian EH (1990) Prefrontal cortex in relation to other cortical areas in rhesus monkey: architecture and connections. In: Uylings HBM,Van Eden CG, DeBraun JPC et al. (eds) Progress in brain research, vol 85. Elsevier, Amsterdam, pp 63–94Google Scholar
  76. Pardo JV, Pardo P, Janer KW, Raichle ME (1990) The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proc Natl Acad Sci USA 87: 256–259PubMedGoogle Scholar
  77. Petrides M (1996) Specialized systems for the processing of mnemonic information in the primate prefrontal cortex. Philos Trans R Soc Lond B Biol Sci 351: 1455–1461PubMedGoogle Scholar
  78. Petrides M, Pandya DN (1999) Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 11: 1011–1036PubMedGoogle Scholar
  79. Porrino LJ, Goldberg-Rakic PS (1982) Brainstem innervation of prefrontal and anterior cingulate cortex in the rhesus monkey revealed by retrograde transport of HRP. J Comp Neurol 205: 63–76PubMedGoogle Scholar
  80. Posner MI, Petersen SE, Fox PT, Raichle ME (1988) Localization of operations in the human brain. Science 240: 1627–1631PubMedGoogle Scholar
  81. Postle BR, Stern CE, Rosen BR, Corkin S (2000) An fMRI investigation of cortical contributions to spatial and nonspatial visual working memory. Neuroimage 11: 409–423PubMedGoogle Scholar
  82. Preuss TM (1995) Do rats have a prefrontal cortex? The Rose-Woolsey-Akert program reconsidered. J Cog Neurosci 7: 1–24Google Scholar
  83. Rainer G, Asaad WF, Miller EK (1998) Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature 393: 577–579PubMedGoogle Scholar
  84. Rakic P (1975) Local circuit neurons. Neurosci Res Progr Bull 13: 289–446Google Scholar
  85. Rao SC, Rainer G, Miller EK (1997) Integration of what and where in the primate prefrontal cortex. Science 276: 821–824PubMedGoogle Scholar
  86. Reep R (1984) Relationship between prefrontal and limbic cortex: A comparative anatomical review. Brain Behav Evo125: 5–80Google Scholar
  87. Rolls ET (2000) The orbitofrontal cortex and reward. Cereb Cortex 10: 284–294PubMedGoogle Scholar
  88. Romanski LM, Tian B, Fritz J, Mishkin M, Goldman-Rakic PS, Rauschecker JP (1999) Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat Neurosci 2: 1131–1136PubMedGoogle Scholar
  89. Rose JE, Woolsey CN (1948) The orbitofrontal cortex and its connections with the mediodorsal nucleus in rabbit, sheep and cat. Res Pub Ass Res Nery Ment Dis 27: 210–232Google Scholar
  90. Rushworth MFS, Owen AM (1998) The functional organization of the lateral frontal cortex: conjecture or conjuncture in the electrophysiological literature? Trends Cogn Sci 2: 46–53PubMedGoogle Scholar
  91. Sanides F (1962) Die Architektonik des menschlichen Stirnhirns. Springer, Berlin Göttingen HeidelbergGoogle Scholar
  92. Sarkissov SA, Filimonoff IN, Kononowa EP, Proebraschenskaja IS, Kukuew LA (1955) Atlas of the Cytoarchitectonics of the human cerebral cortex. Medgiz, MoscowGoogle Scholar
  93. Sesack SR, Deutch AY, Roth RH, Bunney BS (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with phaseolus vulgaris leucoagglutinin. J Comp Neurol 290: 213–242PubMedGoogle Scholar
  94. Smith EE, Jonides J (1999) Storage and executive processes in the frontal lobes. Science 283: 1657–1661PubMedGoogle Scholar
  95. Smith EE, Jonides J, MarshuetzC, Koeppe RA (1998) Components of verbal working memory: evidence from neuroimaging. Proc Natl Acad Sci USA 95: 876–882Google Scholar
  96. Stuss DT, Benson DF (1986) The frontal lobes. Raven, New YorkGoogle Scholar
  97. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, StuttgartGoogle Scholar
  98. Tanji J, Kurata K (1985) Contrasting neuronal activity in supplementary and precentral motor cortex of monkeys. I. Responses to instructions determining motor responses to forthcoming signals of different modalities. J Neurophysiol 53: 129–141Google Scholar
  99. Tanji J, Taniguchi K, Saga T (1980) Supplementary motor area: neuronal response to motor instructions. J Neurophysiol 43: 60–68PubMedGoogle Scholar
  100. Thierry AM, Blanc G, Sobel A, Stinus L, Glowinski J (1973) Dopaminergic terminals in the rat cortex. Science 182: 499–501PubMedGoogle Scholar
  101. Ullsperger M, Cramon DY von (2000) Error processing and response competition: a combined event-related fMRI and ERP study. Psychophysiology 37 (Suppl 1): S99Google Scholar
  102. Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle J, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, MA, pp 549–586Google Scholar
  103. Ungerleider LG, Courtney SM, Haxby JV (1998) A neural system for visual working memory. Proc Natl Acad Sci USA 95: 883–890PubMedGoogle Scholar
  104. Uylings HBM, VanEden CG (1990) Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans. Prog Brain Res 85: 31–62PubMedGoogle Scholar
  105. Van Essen DC, Maunsell JHR (1983) Hierarchical organization and functional streams in the visual cortex. Trends Neurosci 6: 370–375Google Scholar
  106. Watanabe T, Niki H (1985) Hippocampal unit activity and delayed response in the monkey. Brain Res 325: 241–254PubMedGoogle Scholar
  107. Weinberger DR (1993) A connectionist approach to the prefrontal cortex. J Neuropsychiatry 5: 241–253Google Scholar
  108. White IM, Wise SP (1999) Rule-dependent neuronal activity in the prefrontal cortex. Exp Brain Res 126: 315–335PubMedGoogle Scholar
  109. Wilson FAW, Scalaidhe SPO, Goldman-Rakic PS (1993) Dissociation of object and spatial processing domains in the primate prefrontal cortex. Science 260: 1955–1957PubMedGoogle Scholar
  110. Zilles K, Armstrong E, Schleicher A, Kretzschmann HJ (1988) The pattern of gyrification in the cerebral cortex. Anat Embryol (Berl) 179: 173–179Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • O. Gruber
  • T. Arendt
  • D. Y. Von Cramon

There are no affiliations available

Personalised recommendations