Frontalhirn pp 273-290 | Cite as

Frontale Funktionsstörungen bei Alkoholabhängigkeit

  • A. Heinz
  • K. Mann

Zusammenfassung

Etwa 50–70% aller Alkoholabhängigen weisen zerebrale Störungen wie Erweiterungen der Ventrikel und Sulcusverbreiterung auf (Carlen et al. 1978; Schroth et al. 1988; Mann et al. 1995). Neuropathologen beschreiben diesen Befund als Hirnatrophie (Harper u. Kril 1988). Dabei wurden verschiedene Methoden der Atrophiemessung erprobt, die von der ursprünglichen Verwendung qualitativer Schätzskalen (Schroth u. Mann 1989) zur computergestützten, pixelweisen Berechnung des Gesamtvolumens der Liquorräume (Mann et al. 1995) reichen. Vordringliche Ursache dieser Hirnatrophie ist die direkte neurotoxische Wirkung der chronischen Alkoholzufuhr. Bei bestimmten Erkrankungen wie der Wernicke-Enzephalopathie spielt auch eine Fehlernährung mit Vitaminmangel eine Rolle (Estruch et al. 1998). Bezüglich einer möglichen genetischen Vulnerabilität zeigte sich kein Unterschied im Ausmaß der Hirnatrophie bei Patienten mit und ohne familiäre Belastung (Mann 1992).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adams KM, Gilman S, Koeppe RA et al. (1993) Neuropsychological deficits are correlated with frontal hypometabolism in positron emission tomography studies of older alcoholic patients. Alcohol Clin Exp Res 17: 205–218PubMedCrossRefGoogle Scholar
  2. Agartz I, Saaf J, Wahlund LO, Wetterberg L (1991) T1 and T2 relaxation time estimates and brain measures during withdrawal in alcoholic men. Drug Alcohol Depend 29: 157–169PubMedCrossRefGoogle Scholar
  3. Agartz I, Moneman R, Rawlings RR, Kerich MJ, Homer DW (1999) Hippocampal volume in patients with alcohol dependence. Arch Gen Psychiatry 56: 356–363PubMedCrossRefGoogle Scholar
  4. Alexander GE, De Long MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9: 357–381PubMedCrossRefGoogle Scholar
  5. Anton RF, Moak DH, Latham P (1995) The obsessive compulsive drinking scale: a self-rated instrument for the quantification of thoughts about alcohol and drinking behavior. Alcohol Clin Exp Res 19: 92–99PubMedCrossRefGoogle Scholar
  6. Bardenhagen FJ, Bowden SC (1998) Cognitive components in perseverative and nonperseverative errors on the object alternation task. Brain Cogn 37: 224–236PubMedCrossRefGoogle Scholar
  7. Baxter LR, Phleps ME, Mazziotta JC, Guze BH, Schwartz JM, Selin CE (1987) Local cerebral glusoce metabolic rates in obsessive-compulsive disorder. Arch Gen Psychiatry 44: 211–218PubMedCrossRefGoogle Scholar
  8. Besson JAO, Geln AIM, Foreman EI et al. (1981) Nuclear magnetic resonance observations in alcoholic cerebral disorder and the role of vasopression. Lancet 11: 923–924Google Scholar
  9. Besson JAO, Crawford JR, Parker DM, Smith FW (1989) Magnetic resonance imaging in Alzheimer’s disease, multi-infarct dementia, alcoholic dementia and Korsakow’s psychosis. Acta Psychiatry Scand 80: 451–458CrossRefGoogle Scholar
  10. Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361: 31–39PubMedCrossRefGoogle Scholar
  11. Carlen PL, Wortzman G, Holgate RC, Wilkinson DA, Rankin JG (1978) Reversible cerebral atrophy in recently abstinent chronic alcoholics measured by computed tomography scans. Science 200: 1076–1078PubMedCrossRefGoogle Scholar
  12. Chick JD, Smith MA, Engleman HM, Kean DM, Mander AJ, Douglas RHB, Best JJK (1989) Magnetic resonance imaging of the brain in alcoholics: cerebral atrophy, lifetime alcohol consumption and cognitive deficits. Alcohol Clin Exp Res 13: 512–518PubMedCrossRefGoogle Scholar
  13. Cummings JL (1993) Frontal-subcortical circuits and human behavior. Arch Neurol 50: 873–880PubMedCrossRefGoogle Scholar
  14. Desimone R (1995) Is dopamine a missing link? Nature 376: 549–550PubMedCrossRefGoogle Scholar
  15. D’Esposito M, Detre JA, Alsop DC, Shin RK, Atlas S, Grossman M (1995) The neural basis of the central executive system of working memory. Nature 378: 279–281PubMedCrossRefGoogle Scholar
  16. Doudet D, Hommer D, Higley JD, Andreason PJ, Moneman R, Suomi SS, Linnoila M (1995) Cerebral glucose metabolism, CSF 5-HIAA levels, and aggressive behavior in rhesus monkeys. Am J Psychiatry 152: 1782–1787PubMedGoogle Scholar
  17. Elliot R, Frith CD, Dolan RJ (1997) Differential response to positive and negative feedback in planning and guessing tasks. Neuropsychologia 35: 1395–1404CrossRefGoogle Scholar
  18. Estruch R, Bono G, Laine P, Antunez E, Petrucci A, Morocutti C, Hillborn M (1998) Brain imaging in alcoholism. Eur J Neurol 5: 119–135PubMedCrossRefGoogle Scholar
  19. Fein G, Meyerhoff DJ, Di Scafalani V et al. (1994) 1H magnetic resonance spectroscopic imaging separates neuronal from glial changes in alcohol-related brain atrophy. In: Hunt WA, Nixon SJ (eds) Alcohol and glial cells research monography, vol 27. National Institutes of Health, Bethesda, MD, pp 227–241Google Scholar
  20. Fils-Aime ML, Eckhardt MJ, George DT, Brown GL, Mefford I, Linnoila M (1996) Early-onset alcoholics have lower cerebrospinal fluid 5-hydroxyindoleacetic acid levels than late-onset alcoholics. Arch Gen Psychiatry 53: 211–216PubMedCrossRefGoogle Scholar
  21. Fu Y, Tanaka K, Nishimura S (1990) Evaluation of brain edema using magnetic resonance proton relaxation times. In: Long D (ed) Advances in neurology. Brain edema, vol 52. Raven, New York, pp 165–176Google Scholar
  22. Giancola PR, Moss HB (1998) Executive cognitive functioning in alcohol use disorders. Rec Dev Alcoholism 14: 227–251CrossRefGoogle Scholar
  23. Grüsser SM, Heinz A, Flor H (2000) Standardized cues to assess drug craving and drug memory in addicts. J Neural Transm 107: 715–720PubMedCrossRefGoogle Scholar
  24. Harper CG, Kril JJ (1988) Brain atrophy in chronic alcoholic patients: A quantitative pathological study. J Neurol Neurosurg Psychiatry 48: 211–217CrossRefGoogle Scholar
  25. Harper CG, Kril JJ (1989) Patterns of neuronal loss in the cerebral cortex in chronic alcoholic patients. J Neurol Sci 92: 81–89PubMedCrossRefGoogle Scholar
  26. Heinz A (1999a) Neurobiological and anthropological aspects of compulsions and rituals. Pharmacopsychiatry 32: 223–299PubMedCrossRefGoogle Scholar
  27. Heinz A (1999b) Serotonerge Dysfunktion als Folge sozialer Isolation–Bedeutung für die Entstehung von Aggression and Alkoholabhängigkeit. Nervenarzt 70: 780–789PubMedCrossRefGoogle Scholar
  28. Heinz A (2000) Das dopaminerge Verstärkungssystem. Funktion, Interaktion mit anderen Neurotransmittersystemen and psychopathologische Korrelate. In: Hippius H, Saß H, Sauer H (Hrsg) Monographien aus dem Gesamtgebiete der Psychiatrie, Bd 100. Steinkopff, DarmstadtGoogle Scholar
  29. Heinz A, Lichtenberg-Kraag B, Sällström Baum S, Gräf K, Krüger F, Dettling M, Rommelspacher H (1995) Evidence for prolonged recovery of dopaminergic transmission in alcoholics with poor treatment outcome. J Neural Transm 102: 149–158CrossRefGoogle Scholar
  30. Heinz A, Dufeu P, Kuhn S et al. (1996) Psychopathological and behavioral correlates of dopaminergic sensitivity in alcohol-dependent patients. Arch Gen Psychiatry 53: 1123–1128PubMedCrossRefGoogle Scholar
  31. Heinz A, Knable MB, Coppola R, Gorey JG, Jones DW, Lee KS, Weinberger DR (1998 a) Psychomotor slowing, negative symptoms and dopamine receptor availability–an IBZM study in neuroleptic-treated and drug-free schizophrenic patients. Schizophr Res 31: 19–26Google Scholar
  32. Heinz A, Wolf SS, Jones DW, Knable MB, Gorey JG, Hyde TM, Weinberger DR (1998 b) I-123 ß-CIT SPECT correlates of vocal tic severity. Neurology 51: 1069–1074Google Scholar
  33. Heinz A, Ragan P, Jones DW et al. (1998c) Reduced serotonin transporters in alcoholism. Am J Psychiatry 155: 1544–1549PubMedGoogle Scholar
  34. Heinz A, Williams W, Kerich M, Linnoila M, Hommer D (2000) FDG-PET shows orbitofron- tal activation in alcoholics with low serotonin turnover. J Nucl Med 41 (Suppl): 204Google Scholar
  35. Higley JD, Linnoila M (1997) A nonhuman primate model of excessive alcohol intake. Personality and neurobiological parallels of type I- and type II-like alcoholism. In: Galanter M (ed) Recent developments in alcoholism, vol 13: Alcoholism and violence. Plenum, New York, pp 191–219Google Scholar
  36. Hommer D, Monoman R, Rawlings R, Ragan P, Williams W, Rio D, Eckardt M (1996) Decreased corpus callosum size among alcoholic women. Arch Neurol 53: 359–363PubMedCrossRefGoogle Scholar
  37. Hunt WA, Lands WEM (1992) A role for the behavioral sensitization in uncontrolled ethanol intake. Alcohol 9: 327–328PubMedCrossRefGoogle Scholar
  38. Imperato A, Honoré T, Jensen LH (1990) Dopamine release in the nucleus caudatus and in the nucleus accumbens is under glutamatergic control through non-NMDA receptors: a study in freely moving rats. Brain Res 530: 223–228PubMedCrossRefGoogle Scholar
  39. Jagannathan NR, Desai NG, Raghanathan P (1996) Brain metabolic changes in alcoholism: an in vivo proton magnetic resonance spectroscopy (MRS) study. Magn Res Imaging 14: 553–557CrossRefGoogle Scholar
  40. Kalivas PW, Stewart J (1991) Dopamine transmission in the initiation and expression of drug-and stress-induced sensitization of motor activity. Brain Res Rev 16: 223–244PubMedCrossRefGoogle Scholar
  41. Kilts CD (1991) The dopamine receptor family and schizophrenia. Curr Opin Neursci 4: 81–85CrossRefGoogle Scholar
  42. Kolachana BS, Saunders RC, Weinberger DR (1995) Augmentation of prefrontal cortical monoaminergic activity inhibits dopamine release in the caudate nucleus: an in vivo neurochemical assessment in the rhesus monkey. Neuroscience 69: 859–868PubMedCrossRefGoogle Scholar
  43. Kril JJ, Halliday GM (1999) Brain shrinkage in alcoholics: a decade on and what have we learnt? Prog Neurobiol 58: 381–387PubMedCrossRefGoogle Scholar
  44. Kril JJ, Halliday GM, Svoboda MD, Cartwright H (1997) The cerebral cortex is damaged in chronic alcoholics. Neuroscience 79: 983–998PubMedCrossRefGoogle Scholar
  45. Laine TP, Ahonen A, Torniainen P et al. (1999) Dopamine transporters increase in human brain after alcohol withdrawal. Mol Psychiatry 4: 189–191PubMedCrossRefGoogle Scholar
  46. Lewis DA, Anderson SA (1995) The functional architecture of the prefrontal cortex and schizophrenia. Psychol Med 25: 887–894PubMedCrossRefGoogle Scholar
  47. Luciana M, Depue RA, Arbisi P, Leon A (1992) Facilitation of working memory in humans by a D2 dopamine receptor agonist. J Cogn Neurosci 4: 58–68CrossRefGoogle Scholar
  48. MacDonald HL, Bell BA, Smith MA et al. (1986) Correlation of human MR T1 values measured in vivo and brain water content. Br J Radio! 59: 355–357CrossRefGoogle Scholar
  49. Mann K (1992) Alkohol and Gehirn - über strukturelle and funktionelle Verbesserungen nach erfolgreicher Therapie. In: Hippius H, Janzarik W, Müller C (Hrsg) Monographien aus dem Gesamtgebiete der Psychiatrie. Bd 71. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  50. Mann K, Widmann U (1995) Zur Neurobiologie der Alkoholabhängigkeit. Fortschr Neurol Psychiatry 63: 238–247CrossRefGoogle Scholar
  51. Mann K, Batra A, Günther A, Schroth G (1992) Do women develop alcoholic brain damage more readily than men? Alcohol Clin Exp Res 16: 1052–1056PubMedCrossRefGoogle Scholar
  52. Mann K, Dengler W, Klose U, Nägele T, Petersen D, Schmid H, Schroth G ( 1993 a) Liquorvolumetrie and spektroskopische T1-Messungen-eine MR-Verlaufsstudie bei Alkoholabhängigen. In: Fleischhacker WW, Gaebel W, Laux G, Möller HJ, Saletu B, Woggon B (Hrsg) Biologische Psychiatrie der Gegenwart. Springer, Berlin Heidelberg New York Tokyo, pp 547–550Google Scholar
  53. Mann K, Mundle G, Langle G, Petersen D (1993 b) The reversibility of alcoholic brain damage is not due to rehydration: a CT study. Addiction 88: 649–653Google Scholar
  54. Mann K, Mundle G, Strayle M, Wakat P (1995) Neuroimaging in alcoholism: CT and MRI results and clinical correlates. J Neural Transm (Gen Sect) 99: 145–155CrossRefGoogle Scholar
  55. Mann K, Günther A, Stetter F, Ackermann K (1999) Rapid recovery from cognitive deficits in abstinent alcoholics: a controlled test-retest study. Alcohol Alcohol 34: 567–574PubMedCrossRefGoogle Scholar
  56. Martin PR, Gibbs SJ, Nimmerrichter AA, Riddle WA, Welch LW; Willcott MR (1995) Brain proton magnetic resonance spectroscopy studies in recently abstinent alcoholics. Alcohol Clin Exp Res 19: 1078–1082PubMedCrossRefGoogle Scholar
  57. Mc Guire PK, Bench CJ, Frith CD, Marks IM, Franckowiak RS, Dolan RJ (1994) Functional anatomy of obsessive-compulsive phenomena. Br J Psychiatry 164: 459–468CrossRefGoogle Scholar
  58. Miller BL (1991) A review of chemical issues in 1H MR spectroscopy: N-Acetyl-L-aspartate, creatine and choline. MR in Biomed 4: 47–52Google Scholar
  59. Muuronen A, Bergman H, Hindmarsh T, Telakivi T (1989) Influence of improved drinking habits on brain atrophy and cognitive performance in alcoholic patients: a 5-year follow-up study. Alcohol Clin Exp Res 13: 137–141PubMedCrossRefGoogle Scholar
  60. Nicolas JM, Estruch R, Salamero M, Orteu N, Fernandez-Sola, Sacanella E, Urbano-Marquez A (1997) Brain impairment in well-nourished chronic alcoholics is related to ethanol intake. Ann Neurol 41: 590–598PubMedCrossRefGoogle Scholar
  61. O’Malley SS, Jaffe AJ, Chang G, Schottenfeld RS, Meyer RE, Rounsaville B (1992) Naltrexone and coping skills therapy for alcohol dependence. A controlled study. Arch Gen Psychiatry 49: 881–887PubMedCrossRefGoogle Scholar
  62. Patterson CM, Newman JP (1994) Reflexivity and learning from aversive events: towards a psychological mechanism for the syndromes of disinhibition. Psychol Rev 4: 716–736Google Scholar
  63. Perani D, Colombo C, Bressi S et al. (1995) [18F]FDG PET study in obsessive-compulsive disorder. A clinical/metabolic correlation study after treatment. Br J Psychiatry 166: 244–250Google Scholar
  64. Pfefferbaum A, Sullivan EV, Rosenbloom MJ, Shear PK, Mathalon DH, Lim KO (1993) Increase in brain cerebrospinal fluid is greater in older than in younger alcoholic patients: a replication study and CT/MRI comparison. Psychiatry Res 50: 257–274PubMedCrossRefGoogle Scholar
  65. Pfefferbaum A, Sullivan EV, Mathalon DH, Shear PK, Rosenbloom MJ (1995) Longitudinal changes in magnetic resonance imaging brain volumes in abstinent and relapsed alcoholics. Alcohol Clin Exp Res 19: 1177–1191PubMedCrossRefGoogle Scholar
  66. Pfefferbaum A, Sullivan EV, Rosenbloom MJ, Mathalon DH, Lim KO (1998) A controlled study of cortical gray matter and ventricular changes in alcoholic men over a 5-year interval. Arch Gen Psychiatry 55: 905–912PubMedCrossRefGoogle Scholar
  67. Robbins TW, Everitt BJ (1996) Neurobehavioral mechanisms of reward and motivation. Curr Opin Neurobiol 6: 228–236PubMedCrossRefGoogle Scholar
  68. Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev 18: 247–291PubMedCrossRefGoogle Scholar
  69. Rolls ET (2000) The orbitofrontal cortex and reward. Cereb Cortex 10: 284–294PubMedCrossRefGoogle Scholar
  70. Ross B, Michaelis T (1994) Clinical applications of magnetic resonance spectroscopy. Magn Resonance Quart 10: 191–247Google Scholar
  71. Rosse RB, Riggs RL, Dietrich AM, Schwartz BL, Deutsch SI (1997) Frontal cortical atrophy and negative symptoms in patients with chronic alcohol dependence. J Neuropsychiatry Clin Neurosci 9: 280–282PubMedGoogle Scholar
  72. Sass H, Soyka M, Mann K, Zieglgänsberger W (1996) Relapse prevention by acamprosate: results from a placebo-controlled study on alcohol dependence. Arch Gen Psychiatry 53: 673–680PubMedCrossRefGoogle Scholar
  73. Schmidt LG, Kuhn S, Rommelspacher H (1997) Pharmacological effects of lisuride shorten, expectations to receive the drug prolong the latency of relapse in weaned alcoholics. Pharmacopsychiatry 30 (Abs): 219Google Scholar
  74. Schroth G, Naegele T, Klose U, Mann K, Petersen D (1988) Reversible brain shrinkage in abstinent alcoholics, measured by MRI. Neuroradiology 30: 121–126CrossRefGoogle Scholar
  75. Schroth G, Mann K (1989) Computertomographie and Kernspintomographie in der klinischen Diagnostik and Erforschung der Alkoholkrankheit. In: Schied HW, Heimann H, Mayer K (Hrsg) Der chronische Alkoholismus. Fischer, Stuttgart, S 121–140Google Scholar
  76. Schultz W, Apicella P, Ljungberg T (1993) Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci 13: 900–913PubMedGoogle Scholar
  77. Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275: 1593–1599PubMedCrossRefGoogle Scholar
  78. Seitz D, Widmann U, Seeger U, Naegele T, Klose U, Mann K, Grodd W (1999) Localized proton magnetic resonance spectroscopy of the cerebellum in detoxifying alcoholics. Alcohol Clin Exp Res 23: 158–163PubMedCrossRefGoogle Scholar
  79. Shear PK, Jernigan TL, Butters N (1994) Volumetric magnetic resonance imaging quantification of longitudinal brain changes in abstinent alcoholics. Alcohol Clin Exp Res 18: 172–176PubMedCrossRefGoogle Scholar
  80. Shear PK, Sullivan EV, Lane B, Pfefferbaum A (1996) Mammillary body and cerebellar shrinkage in chronic alcoholics with and without amnesia. Alcohol Clin Exp Res 20: 1489–1495PubMedCrossRefGoogle Scholar
  81. Sibley DR, Monsma FJ (1992) Molecular biology of dopamine receptors. TIPS Rev 13: 61–69Google Scholar
  82. Smith MA, Chick J, Kean DM, Douglas RHB, Singer A, Kendell R, Best JJK (1985) Brain water in chronic alcoholic patients measured by magnetic resonance imaging. Lancet 1: 1273–1274PubMedCrossRefGoogle Scholar
  83. Smith MA, Chick JD, Engleman HM, Kean DM, Mander AJ, Douglas RHB (1988) Brain hydration during alcohol withdrawal in alcoholics measured by magnetic resonance imaging. Drug Alcohol Depend 21: 25–28PubMedCrossRefGoogle Scholar
  84. Stoll AL, Renshaw PF, De Micheli E, Wurtman R, Pillay SS, Cohen BM (1995) Choline ingestion increases the resonance of choline-containing compounds in human brain: an in vivo proton magnetic resonance study. Biol Psychiatry 37: 170–174PubMedCrossRefGoogle Scholar
  85. Sullivan EV, Marsh L, Mathalon DH, Lim KO, Pfefferbaum A (1995) Anterior hippocampal volume deficits in nonamnesic, aging chronic alcoholics. Alcohol Clin Exp Res 19: 110–122PubMedCrossRefGoogle Scholar
  86. Taber MT, Das S, Fibiger HC (1995) Cortical regulation of dopamine release: mediation via the ventral tegmental area. J Neurochem 65: 1407–1410PubMedCrossRefGoogle Scholar
  87. Thorpe SJ, Rolls ET, Maddison S (1983) The orbitofrontal cortex: neuronal activity in the behaving monkey. Exp Brain Res 49: 93–115PubMedCrossRefGoogle Scholar
  88. Tiffany ST (1990) A cognitive model of drug urges and drug-use behavior: role of automatic and nonautomatic processes. Psychol Rev 2: 147–168CrossRefGoogle Scholar
  89. Trabert W, Betz T, Niewald M, Huber G (1995) Significant reversibility of alcoholic brain shrinkage within 3 weeks of abstinence. Acta Psychiatr Scand 92: 87–90PubMedCrossRefGoogle Scholar
  90. Tsai G, Gastfriend DR, Coyle JT (1995) The glutamatergic basis of human alcoholism. Am J Psychiatry 152: 332–340PubMedGoogle Scholar
  91. Verheul R, Van den Brink W, Geerlings P (1999) A three-pathway psychobiological model of craving for alcohol. Alcohol Alcohol 34: 197–222PubMedCrossRefGoogle Scholar
  92. Vion-Dury J, Meyerhoff D J, Cozzone PJ, Weiner MW (1994) What might be the impact on neurology of the analysis of brain metabolism by in vivo magnetic resonance spectroscopy? J Neurol 241: 354–371PubMedCrossRefGoogle Scholar
  93. Volkow ND, Hitzemann R, Wang GJ et al. (1992) Decreased brain metabolism in neurologically intact healthy alcoholics. Am J Psychiatry 149: 1016–1022PubMedGoogle Scholar
  94. Volkow ND, Wang GJ, Hitzemann R et al. (1993) Decreased cerebral response to inhibitory neurotransmission in alcoholics. Am J Psychiatry 150: 417–422PubMedGoogle Scholar
  95. Volkow ND, Wang GJ, Hitzemann R, Fowler JS, Overall JE, Burr G, Wolf AP (1994) Recovery of brain glucose metabolism in detoxified alcoholics. Am J Psychiatry 151: 178–183PubMedGoogle Scholar
  96. Volkow ND, Wang GJ, Fowler JS et al. (1996) Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Alcohol Clin Exp Res 20: 1594–1598PubMedCrossRefGoogle Scholar
  97. Volkow ND, Wang GJ, Overall JE et al. (1997) Regional brain metabolic response to lorazepam in alcoholics during early and late alcohol detoxification. Alcohol Clin Exp Res 21: 1278–1284PubMedCrossRefGoogle Scholar
  98. Volpicelli JR, Watson NT, King AC, Sherman CE, O’Brien CP (1995) Effect of naltrexone on alcohol „high“ in alcoholics. Am J Psychiatry 152: 613–615PubMedGoogle Scholar
  99. Watanabe M (1996) Reward expectancy in primate prefrontal neurons. Nature 382: 629–632PubMedCrossRefGoogle Scholar
  100. Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44: 660–669PubMedCrossRefGoogle Scholar
  101. Williams GV, Goldman-Rakic PS (1995) Modulation of memory fields by dopamine Dl receptors in prefrontal cortex. Nature 376: 572–575PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • A. Heinz
  • K. Mann

There are no affiliations available

Personalised recommendations