On the Identification of Non-Linear Operators and its Application (Invited contribution)

  • V. L. Makarov
  • V. V. Khlobystov
Part of the Boundary Elements IX book series (BOUNDARY, volume 9/1)


This paper seeks to extend the analytical theory of non-linear systems, study new possible approaches to the problems of identification in a wide sense and problems involving the approximation of inverse operator for differential equations.


Boundary Element Interpolation Polynomial Computational Aspect Interpolation Process Volterra Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Billings S.A. (1980). Identification of Nonlinear System — a Survey, IEEE Proceedings, Vol. 127, pp. 272–285.MathSciNetGoogle Scholar
  2. 2.
    Pupkov I.I., Kapalin V.I., Jushenko A.S. (1976). Functional series in nonlinear system theory (Russian), Nauka, Moscow.Google Scholar
  3. 3.
    Porter W.A. (1975). Data Interpolation; Casuality, Structure and System Identification, Information and Control, Vol. 29, pp. 217–233.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Laurent P.J. (1972). Approximation et Optimisation, Hermann, Paris.MATHGoogle Scholar
  5. 5.
    Ahlberg J.H., Nilson E.,uilalsh J.L. (1967). The Theory of Splines and their Applications, Academic Press, New York and London.MATHGoogle Scholar
  6. 6.
    Tikhonov A.N., Arsenin V.J. (1974). The methods for solving non-correct problems (Russian), Nauka, Moscow.Google Scholar
  7. 7.
    Schetzen M. (1965). Determination of Kernels of a Non linear System of Finite Order, Journal of Control, Vol. 5.Google Scholar
  8. 8.
    Ladyzhenskeya O.A., Uraltseva N.N. (1964). Linear and Quasilinear Equations of Elliptic Type (Russian), Nauka, Moscow.Google Scholar
  9. 9.
    Tikhonov A.H., Samarskiy A.A. (1972). The Equations of Mathematical Physics (Russian), Nauka, Moscow.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • V. L. Makarov
    • 1
  • V. V. Khlobystov
    • 1
  1. 1.Department of CyberneticsKiev State UniversityKievUSSR

Personalised recommendations