Advertisement

A New Coordinate Transformation Method for Singular and Nearly Singular Integrals over General Curved Boundary Elements

  • K. Hayami
  • C. A. Brebbia
Part of the Boundary Elements IX book series (BOUNDARY, volume 9/1)

Abstract

A new method for calculating singular and nearly singular integrals of order 1/r, 1/r2, 1/r3 over a general curved surface arising in 3 dimensional boundary element analysis is proposed.

Keywords

Source Point Boundary Element Boundary Element Method Integration Point Singular Integral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    BREBBIA, C.A., TELLES, J.C.F. and WROBEL, L.C. “Boundary Element Techniques: Theory and Applications in Engineering”, Springer-Verlag, Berlin, 1984.MATHCrossRefGoogle Scholar
  2. 2.
    LACHAT, J.C. and WATSON, J.O. “Effective Numerical Treatment of Boundary Integral Equations: A Formulation for Three-Dimensional Elastostatics”, Int. J. Num. Meth. Engng. 10 273–289, 1976.MathSciNetCrossRefGoogle Scholar
  3. 3.
    CRISTESCU, M. and LOUBIGNAC, Q. “Gaussian Quadrature Formulas for Functions with Singularities in 1/r over Triangles and Quadrangles”, in Recent Advances in Boundary Element methods, Ed. C. Brebbia, Pentech Press, London, 1978.Google Scholar
  4. 4.
    PINA, H. “Numerical Integration”, in Topics in Boundary Element Research, Vol.3, Ed. C. Brebbia, Springer Verlag, Berlin, 1987.Google Scholar
  5. 5.
    JUN, L., BEER, G. and MEEK, J.L. “Efficient Evaluation of Integrals of Order 1/r, 1/r2, 1/r3 using Gauss Quadrature”, Engineering Analysis, 2, 118–123, 1985.CrossRefGoogle Scholar
  6. 6.
    ALIABADI, M.H., HALL, W.S. and PHEMISTER, T.G. “Taylor Expansion for Singular Kernels in the Boundary Element Method”, Int. J. Num. Meth. Engng., 21, 2221–2236, 1985.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    TAKAHASHI, M. and MORI, M. “Quadrature Formulas obtained by Variable Transformation”, Numer. Math. 21, 206–219, 1973.MathSciNetCrossRefGoogle Scholar
  8. 8.
    HIGASHIMACHI, T., OKAMOTO, N., EZAWA, Y., AIZAWA, T. and ITO, A. “Interactive Structural Analysis System using the Advanced Boundary Element Method”, in Boundary Elements Proc. 5th Int. Conf., Hiroshima, Japan, eds. C. Brebbia, T. Futagami and M. Tanaka, Springer-Verlag, Berlin, CML Publications, Southampton, 1983.Google Scholar
  9. 9.
    TELLES, J.C.F. “A Self Adaptive Coordinate Transform for Efficient Numerical Evaluation of General Boundary Element Integrals”, Int. J. Num. Meth. Engng., (to appear).Google Scholar
  10. 10.
    KOIZUMI, M. and UTAMURA, M. “A New Approach to Singular Kernel Integration for General Curved Elements”, Boundary Elements, Proc. 8th Inst. Conf., Tokyo, Japan, eds. M. Tanaka, C.A. Brebbia, Springer-Verlag, Berlin and CML Publications, Southampton, 665–675, 1986.Google Scholar
  11. 11.
    STROUD, A.H. and SECREST, D. “Gaussian Quadrature Formulas” Prentice-Hall, New York, 1966.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • K. Hayami
    • 1
  • C. A. Brebbia
    • 2
  1. 1.C & C Information Technology Research Labs.NEC CorporationKawasakiJapan
  2. 2.Computational Mechanics InstituteSouthamptonUK

Personalised recommendations