Skip to main content

Significance of Kernel Singularities for the Numerical Solution of Fredholm Integral Equations

  • Conference paper

Part of the book series: Boundary Elements IX ((BOUNDARY,volume 9/1))

Abstract

Frequently Fredholm integral equations of the first kind are considered to be inherently ill-posed and therefore much less suited to numerical computation than those of the second kind. Based on collocation methods for boundary integral equations arising in fluid flow we will show that this is not true in all cases. Thereby two questions are to be answered in particular.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold D.N. and Wendland W.L. (1983), On the Asyptotic Convergence of Collocation Methods, Mathematics of Computation, Vol. 41, pp. 349–381.

    Article  MathSciNet  MATH  Google Scholar 

  2. Saranen I. and Wendland W.L. (1985), On the Asyptotic Convergence of Collocation Methods With Spline Functions of Even Degree, Mathematics of Computation, Vol. 45, pp. 91–108.

    Article  MathSciNet  MATH  Google Scholar 

  3. Schmidt G. (1985), On Spline Collocation Methods for Boundary Integral Equations in the Plane, Math. Meth. in the Appl.Sci., Vol. 7, pp. 74–89.

    Article  MATH  Google Scholar 

  4. Prager W. (1928), Die Druckverteilung an Körpern in ebener Potentialströmung, Physikalische Zeitschrift, Vol. 19, pp. 865–869.

    Google Scholar 

  5. Martensen E. (1959), Berechnung der Druckverteilung an Gitterprofilen in ebener Potentialströmung mit einer Fredholmschen Integralgleichung, Arch. Rational Mech. Anal., Vol. 3, pp. 235–270.

    MathSciNet  MATH  Google Scholar 

  6. Imbach H.E. (1964), Berechnung der kompressiblen, reibungsfreien Unterschallströmung durch räumliche Gitter aus Schaufeln auch grosser Dicke und starker Wölbung, Juris-Verlag, Zürich.

    Google Scholar 

  7. Ribaut M. and Vainio R. (1975), On the Calculation of Two-Dimensional Subsonic and Shock-Free Transonic Flow, Trans. ASME Ser.A J.Engn.Power, Vol.97, pp. 603–609.

    Google Scholar 

  8. Oeller H.J. (1963), Beitrag zur Berechnung der inkompressiblen Unterschallströmung in ebenen Profilgittern auf elektronischen Digitalrechnern, Westdeutscher Verlag, Köln und Op-laden.

    Book  Google Scholar 

  9. Djaoua M. (1981), A Method of Calculation of Lifting Flows Around Two- Dimensional Corner-Shaped Bodies, Mathematics of Computation, Vol. 36, pp. 405–425.

    MathSciNet  MATH  Google Scholar 

  10. Lawson Ch.L. and Hanson R.J. (1974), Solving Least Squares Problems, Prentice Hall, Englewood Cliffs.

    Google Scholar 

  11. Richter G.R. (1978), Numerical Solution of Integral Equations of the First Kind With Nonsmooth Kernels, SIAM J.Numer. Anal., Vol. 15, pp. 513–522.

    Google Scholar 

  12. Wendland W.L. (1981), On the Asymptotic Convergence of Boundary Integral Methods, in Boundary Element Methods (Ed. Brebbia C.A. ), pp. 412–430, Springer-Verlag, Berlin and New York.

    Google Scholar 

  13. Paine J. and Russel R.D. (1968), Conditioning of Collocation Matrices and Discrete Green’s Functions, SIAM J.Numer.Anal., Vol. 23, pp. 376–392.

    Article  Google Scholar 

  14. Christiansen S. (1983), Numerical Investigation of an Integral Equation of Hsiao and MacCarny, ZAMM, Vol. 63, pp. T341 - T343.

    Article  MathSciNet  MATH  Google Scholar 

  15. Hoidn H.P. (1983), Die Kollokationsmethode angewandt auf die Symmsche Integralgleichung, Thesis ETH, Zürich.

    MATH  Google Scholar 

  16. Wendland W.L. and Christiansen S. (1986), On the Condition Number of the Influence Matrix Belonging to Some First Kind Integral Equations with Logarithmic Kernel, Applicable Ana-lysis, Vol. 21, pp. 175–183.

    Article  MathSciNet  MATH  Google Scholar 

  17. Wendland W.L. (1983), On the Spline Approximation of Singular Integral Equations and One-Dimensional Pseudo-Differential Equations on Closed Curves, preprint from the Author.

    Google Scholar 

  18. Niessner H. and Ribaut M. (1985), Condition of Boundary Integral Equations Arising From Flow Computations, J.of Comp. and Appl. Math., Vol. 12–13, pp. 491–503.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

C. A. Brebbia W. L. Wendland G. Kuhn

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Niessner, H. (1987). Significance of Kernel Singularities for the Numerical Solution of Fredholm Integral Equations. In: Brebbia, C.A., Wendland, W.L., Kuhn, G. (eds) Mathematical and Computational Aspects. Boundary Elements IX, vol 9/1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21908-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21908-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21910-2

  • Online ISBN: 978-3-662-21908-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics