Skip to main content

Optimization of Heat Pump Dehumidifier

  • Conference paper
Book cover Drying ’85

Abstract

The paper presents two mathematical models of the air drying with heat pump applied to an adiabatic dryer.

Elaboration of these models allows to optimize the system operation in order to decrease energy consumption of drying by adjusting refrigerant boiling temperature in the heat pump.

It was found that the difference between air dew point temperature and boiling temperature (TDP- TeV) correlates well the process data.

The conclusions drawn from the analysis of optimization results were checked out on the test rig. It was observed that the increase of system heat losses cause that the optimum value of the control parameter (TDP- TeV) moves towards its higher values the region of 18–20 K and the specific energy consumption (SEC) values increase. Due to constant swept volume of the heat pump compressor tested it is necessary, however, to adjust the mass flow rate of air dried. From the experimental data it follows that good insulation and leak proofing of the system are of great importance for obtaining low (SEC) values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Duminil, M., in Heat Pumps and Their Contribution to Energy Conservation, ed. E. Camatini end T. Kester, NATO Advanced Study Institute Series…, Noordhoff, pp. 97–154 (1976)

    Google Scholar 

  2. Lascelles, D.R. and Jebson, R.S., Bull. IIF/IIR. Annexe, vol. 1 (1976)

    Google Scholar 

  3. Curis, O., and Laine, J.D., Int. Symp. Industrial Application of Heat Pumps, Coventry, UK, Paper C4, 99–116 (1982)

    Google Scholar 

  4. Kolbusz, P., Industrial Application of Heat Pumps,(see ref. 1, pp. 201–217 )

    Google Scholar 

  5. Solignac, M., Union Internationale d’Electrothérmie VIIIth Congress, Liège Section III, Ref. no. 5 (1976)

    Google Scholar 

  6. Geeraert, B., Air Drying by Heat Pumps with Special Reference to Timber Drying see Ref. 1 pp 219–246

    Google Scholar 

  7. Żyłła, R., Abbas, S.P., Tai, K.W., Devotta, S., Watson, F.A., and Holland, F.A., Int. J. Energy Research, vol. 6, 305 (1982)

    Article  Google Scholar 

  8. Goodman, W., Heating Piping Air Conditioning, vol. 10, 11 (1938–1939)

    Google Scholar 

  9. Gogolin, A.A., Air Drying with Refrige-rators, Gosiztorg, Moscow (1962), (in Russian)

    Google Scholar 

  10. Shaw, D.R., private communication

    Google Scholar 

  11. Hodgett, D.L. and Friedel, W., Commission of the European Communities Report EUR 8077 EN (1982) after J.Heat Recovery Systems, vol. 3, 91 (1983)

    Google Scholar 

  12. Lawton, J., Heat Pumps-Energy Savers for Process Industries, Salford, UK, 7–8 Apr. (1981)

    Google Scholar 

  13. Oliver, T.N., Int. Symp. Industrial Application of Heat Pumps, Coventry,UK Taper C2, pp. 73–88 (1982)

    Google Scholar 

  14. Teculescu, N., PAC-Industrie, No. 5, 25–31, (1977)

    Google Scholar 

  15. Perry, E.J., IEE Conf. Publ. 192, Int. Conf. Future Energy Concepts, pp.246254,(1981)

    Google Scholar 

  16. Flikke, A.M., Cloud,H.A. and Hustrulid, A., Agricultural Engineering, vol. 38, 592 (1957)

    Google Scholar 

  17. Malkin, L.S., Proc. 3rd Int. Drying Symp. Birmipgham U$, vol. 1 256 (1982)

    Google Scholar 

  18. Nagaraja, S. and Krishna Murthy, M.V., Int. J. Heat Mass Transfer, vol. 21, 87 (1978)

    Article  Google Scholar 

  19. Gutierrez, A,G., El-Meniawy, S.A.K., Watson, F.A. and Holland, F.A., Ind. Chem. Eng., vol. XXI, 3 (1 979)

    Google Scholar 

  20. Terry, I., Chemical Engineering Handbook, Chapter 15, 4th ed., McGraw-Hill (1963)

    Google Scholar 

  21. Hodgett, D.L. and Lincoln, P., Electri city Council Research Centre, Report M1147 (1978)

    Google Scholar 

  22. Tai, K.W., Zyxia, R., Devotta, S., Diggory, P.J., Watson, F.A. and Holland, F.A., Int. J. Energy Research, vol. 6, 323 (1982)

    Article  CAS  Google Scholar 

  23. Tai, K.W., Devotta, S., Watson, F.A. and Holland, F.A., Int. J. Energy Research, vol. 6, 333 (1982)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Strumiłło, C., Żyłła, R. (1985). Optimization of Heat Pump Dehumidifier. In: Toei, R., Mujumdar, A.S. (eds) Drying ’85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21830-3_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21830-3_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21832-7

  • Online ISBN: 978-3-662-21830-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics