Advertisement

Der Stoffwechsel der P-haltigen Verbindungen

  • P. Schwarze
  • J. M. Wiame
  • J. A. Lovern
  • W. W. Umbreit
  • H. G. Albaum
  • K. Hasse
  • B. J. D. Meeuse
  • J. R. P. O’Brien
  • Bernard Axelrod
  • Robert S. Bandurski
  • Te May Ching
Part of the Encyclopedia of Plant Physiology / Handbuch der Pflanzenphysiologie book series (532, volume 9)

Zusammenfassung

Als Pfeffer kurz vor der Jahrhundertwende sein Lehrbuch der Pflanzen-physiologie schrieb, war über die Rolle des Phosphors im Stoffwechsel noch wenig bekannt. „Dieser ist mit Rücksicht auf die Verkettung mit Proteinstoffen unter allen Umständen unentbehrlich. Jedoch ist unbekannt, inwieweit der Phosphor noch anderweitig Bedeutung im Organismus gewinnt“ (Band I, S. 422). Bereits 1840 hatte Liebig gezeigt, daß der Phosphor dem Boden entnommen wird, und Sachs und Knop führten 1860 den Nachweis, daß er zu den unentbehrlichen Elementen gehört. Ein Vierteljahrhundert nach Pfeffers Lehrbuch erschien die „Biochemie der Pflanzen“ von Czapek und wenig später das Lehrbuch der chemischen Physiologie von Kostytschew. Czapek behandelt die große Zahl der Arbeiten, die sich mit den damals bekannten P-Verbindungen (Phosphatiden, Phosphoproteinen, Nucleinsäuren und Phytin), den an ihrem Umsatz beteiligten Enzymen und mit der Aufnahme und Wanderung der Phosphorsäure befassen. Obwohl viele Ergebnisse dieser Arbeiten heute überholt sind, da sie mit unzulänglichen Methoden gewonnen wurden, ist Czapeks dreibändiges Werk als Fundgrube der älteren Literatur auch jetzt noch für den Physiologen von großem Nutzen. Gemessen an unserem heutigen Wissen sind zu dieser Zeit die Einblicke in den Stoffwechsel der P-Verbindungen noch gering und ist kaum etwas über ihre Bedeutung und Funktion im Zellstoffwechsel bekannt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Albaum, H. G., and W. W. Umbeeit: Phosphorus transformations during development of the oat embryo. Amer. J. Bot. 30, 553–558 (1943).Google Scholar
  2. Arnon, D. I., M. B. Allen and F. T. Whatley: Photosynthesis by isolated chloroplasts. Nature (Lond.) 174, 394–396 (1954).Google Scholar
  3. Axelrod, B.: Citrus fruit phosphatase. J. of Biol. Chem. 167, 57–72 (1947).Google Scholar
  4. Beevers, H., and M. Gibbs: The direct oxidation pathway in plant respiration. Plant Physiol. 29, 322–324 (1954).PubMedGoogle Scholar
  5. Calvin, M.: Der Photosynthese-Cyclus. Angew. Chem. 68, 253–264 (1956).Google Scholar
  6. Cori, C.F., S. P. Colowick and G. T. Cori: The isolation and synthesis of glucose-1-phosphoric acid. J. of Biol. Chem. 121, 465–477 (1937).Google Scholar
  7. Czapek, Fr.: Biochemie der Pflanzen, Bd. III. Jena: Gustav Fischer 1925.Google Scholar
  8. Emerson, R. L., I. F. Stauffer and W.W. Umbreit: Relationships between phosphorylation and photosynthesis in Chlorella. Amer. J. Bot. 31, 107–120 (1944).Google Scholar
  9. Gregory, J. D., G. D. Novelli and F. Lipmann: The composition of coenzym A. J. Amer. Chem. Soc. 74, 854 (1952).Google Scholar
  10. Gunsalus, I. C., W. D. Bellamy and W. W. Umbreit: A phosphorylated derivative of pyridoxal as the coenzyme of tyrosine decarboxylase. J. of Biol. Chem. 155, 685–686 (1944).Google Scholar
  11. Hanes, C. S.: Breakdown and synthesis of starch by an enzyme system from pea seeds. Proc. Roy. Soc. Lond., Ser. B 128, 421–450 (1940).Google Scholar
  12. Hanes, C. S.: The reversible formation of starch from glucose-1-phosphate catalysed by potato Phosphorylase. Proc. Roy. Soc. Lond., Ser. B 129, 174–208 (1940).Google Scholar
  13. Harden, A., and W.J. Young: The alcoholic fermentation of yeast-juice. II. The coferment of yeast-juice. Proc. Roy. Soc. Lond., Ser. B 78, 369–375 (1906).Google Scholar
  14. Hassid, W. Z., and M. Doudoroff: Synthesis of disaccharides with bacterial enzymes. Adv. Enzymol. 10, 123–143 (1950).Google Scholar
  15. Hoffmann-Ostenhof, O., I. Kenedy, K. Keck, O. Gabriel u. H. W. Schönfellinger: Ein neues phosphat-übertragendes Ferment aus Hefe. Biochim. et Biophysica Acta 14, 285 (1954).Google Scholar
  16. Hoffmann-Ostenhof, O., u. W. Weigert: Über die mögliche Funktion des polymeren Metaphosphats als Speicher energiereichen Phosphats in der Hefe. Naturwiss. 39, 303–304 (1952).Google Scholar
  17. Kalckar, H. M.: The nature of energetic coupling in biological synthesis. Chem. Rev. 28, 71–78 (1941).Google Scholar
  18. Kandler, O.: Über die Beziehungen zwischen Phosphathaushalt und Photosynthese. I. Phosphatspiegelschwankungen bei Chlorella pyrenoidosa als Folge des Licht-Dunkel-Wechsels. Z. Naturforsch. 5b, 423–437 (1950).Google Scholar
  19. Kaplan, N. O.: Thermodynamics and mechanism of the phosphate bond. In Sumner-Myrbäck, The Enzymes, vol. II, part 1. New York: Academic Press 1951.Google Scholar
  20. Karrer, P., K. Schöpp u. F. Benz: Synthesen von Flavinen. IV. Helvet. chim. Acta 18, 426–429 (1935).Google Scholar
  21. Kostytschew, S.: Lehrbuch der Pflanzenphysiologie. Chemische Physiologie. I. Berlin: Springer 1926.Google Scholar
  22. Kuhn, R., K. Reinemund, H. Kaltschmitt, R. Ströbele u. H. Frischmann: Synthetisches 6,7-Dimethyl-9-d-riboflavin. Naturwiss. 23, 260 (1935).Google Scholar
  23. Leloir, L. F., and C. E. Cardini: The biosynthesis of sucrose. J. Amer. Chem. Soc. 75, 6084 (1953).Google Scholar
  24. Lipmann, F.: Metabolic generation and utilization of phosphate bond energy. Adv. Enzymol. 1, 99–162 (1941).Google Scholar
  25. Lynen, F., u. E. Reichert: Zur chemischen Struktur der „aktivierten Essigsäure“. Z. angew. Chem. 63, 47–48 (1951).Google Scholar
  26. Pfeffer, W.: Pflanzenphysiologie, Bd. I. Leipzig: Wilhelm Engelmann 1897.Google Scholar
  27. Roche, J.: Phosphatases. In Sumner-Myrbäck, The Enzymes, vol. I, part 1, p. 473–510 New York: Academic Press 1950.Google Scholar
  28. Schlenk, F., u. H. v. Euler: Cozymase. Naturwiss. 24, 794–795 (1936).Google Scholar
  29. Simonis, W.: Untersuchungen zur lichtabhängigen Phosphorylierung. II. Z. Naturforsch.j 11b, 354–363 (1956).Google Scholar
  30. Simonis, W., u. M. Ehrenberg: Untersuchungen zur lichtabhängigen Phosphorylierung. IV. Die Wirkung des Lichtes auf die 32P-Einlagerung bei chlorophyllfreien Pflanzenzellen und- geweben. Z. Naturforsch. 12b, 156–163 (1957).Google Scholar
  31. Simonis, W., u. K. H. Grube: Weitere Untersuchungen über Phosphathaushalt und Photosynthese. Z. Naturforsch. 8b, 312–317 (1953).Google Scholar
  32. Simonis, W., u. H. Kating: Untersuchungen zurlichtabhängigen Phosphorylierung. I. Die Beeinflussung der lichtabhängigen Phosphorylierung von Algen durch Glucosegaben. Z. Naturforsch. 11b, 165–172 (1956).Google Scholar
  33. Simonis, W., u. H. Kating: Untersuchungen zur lichtabhängigen Phosphorylierung. Z. Naturforsch. 11b, 704–708 (1956).Google Scholar
  34. Stich, H.: Der Nachweis von Metaphosphaten in normalen, verdunkelten und Trypaflavin-behandelten Acetabularien. Z. Naturforsch. 8b, 36–44 (1953).Google Scholar
  35. Strehler, B. L.: Firefly luminescence in the study of energy transfer mechanism. II. Adenosine triphosphate and photosynthesis. Arch, of Biochem. a. Biophysics 43, 67–79 (1953).Google Scholar
  36. Suzuki, U., Y. Yoshiura and M. Takaishi: On the occurrence of an enzyme which decomposes anhydrooxy-methylene phosphoric acid. Tokyo Chem. Soc. 27, 1330–1342 (1906).Google Scholar
  37. Theorell, H., and A. P. Nygaard: The combination of flavin mononucleotide and riboflavin with the protein of the old yellow enzyme. Acta chem. scand. (Copenh.) 8, 1104–1105 (1954).Google Scholar
  38. Thomas, I.B., and A. M. I. Haans: Photosynthetic activity of fragments of Spirogyra chloroplasts. Biochim. et Biophysica Acta 18, 287–288 (1955).Google Scholar
  39. Vogler, K. G.: The nature of the chemosynthetic process. J. Gen. Physiol. 26, 103–117 (1942).PubMedGoogle Scholar
  40. Vogler, K. G., and W. W. Umbreit: The nature of the energy storage material active in the chemosynthetic process. J. Gen. Physiol. 26, 157–167 (1942).PubMedGoogle Scholar
  41. Warburg, O., u. W. Christian: Ein zweites Sauerstoffübertragendes Ferment und sein Absorptionsspektrum. Naturwiss. 20, 688 (1932).Google Scholar
  42. Warburg, O., u. W. Christian: Über das Oxydationsferment. Naturwiss. 20, 980–981 (1932).Google Scholar
  43. Warburg, O., u. W. Christian: Pyridin, der wasserstoffübertragende Bestandteil von Gärungsfermenten (Pyridinnucleotide). Biochem. Z. 287, 291–333 (1936).Google Scholar
  44. Warburg, O., u. W. Christian: Isolierung der prosthetischen Gruppe der d-Aminosäure-Oxydase. Biochem. Z. 298, 158–168 (1938).Google Scholar

1. Polyphosphates

  1. Albaum, H. G., A. Schatz, S. H. Hutner and A. Hirschfeld: Phosphorylated compounds in Euglena. Arch, of Biochem. 29, 210 (1950).Google Scholar
  2. Ascoli, A.: Über die Piasminsäure. Z. physiol. Chem. 28, 426 (1899).Google Scholar
  3. Babes, V.: Z. Hyg. 5, 173 (1889).Google Scholar
  4. Belozerski, A.N.: Complexe métaphosphate-acide nucléique des levures et nature chimique de la volutine. Comm. au 3. Congr. de Biochimie, Bruxelles, 1955.Google Scholar
  5. Brandt, K. M.: Physiologische Chemie und Cytologie der Preßhefe. Protoplasma 36, 77 (1941).Google Scholar
  6. Chayen, K., S. Chayen and E. R. Roberts: Observations on nucleic acid and polyphosphate in Torvlopsis utilis. Biochim. et Biophysica Acta 16, 117 (1955).Google Scholar
  7. Clifton, C. E.: Microbial assimilation. Adv. Enzymol. 6, 269 (1946).Google Scholar
  8. Crowther, J. P.: Filter paper chromatographic analysis of phosphate mixture. Nature (Lond.) 173, 486 (1954).Google Scholar
  9. Damle, S. P., and P. S. Krishnan: Studies on the role of metaphosphate in molds. I. Quantitative studies on the metachromatic effect of metaphosphate. Arch. of Biochem. a. Biophysics 49, 58 (1954).Google Scholar
  10. Deken, R. de: Relations entre la structure moléculaire et le pouvoir inhibiteur de nitro- et halophénols. Biochim. et Biophysica Acta 17, 457 (1955).Google Scholar
  11. Duguid, J. P., I. W. Smith and J. F. Wilkinson: Volutin production in Bacterium aerogenes due to the development of an acid reaction. J. of Path. 67, 289 (1954).Google Scholar
  12. Ebel, J. P.: Sur le dosage des métaphosphates dans les microorganismes par hydrolyse différentielle; technique et application aux levures. C. r. Acad. Sci. Paris 226, 2184 (1948).Google Scholar
  13. Ebel, J. P.: Recherches sur les polyphosphates contenus dans diverses cellules vivantes. I. Mise au point d’une méthode d’extraction. Bull. Soc. Chim. biol. Paris 34, 321 (1952 a).PubMedGoogle Scholar
  14. Ebel, J. P.: II. Etude chromatographique et potentiométrique des polyphosphates de levure. Bull. Soc. Chim. biol. Paris 34, 330 (1952 b).PubMedGoogle Scholar
  15. Ebel, J. P.: III. Recherche et dosage des polyphosphates dans les cellules de divers organismes et animaux supérieurs. Bull. Soc. Chim. biol. Paris 34, 491 (1952 c).PubMedGoogle Scholar
  16. Ebel, J. P.: IV. Localisation cytologique et rôle physiologique des polyphosphates dans la cellule vivante. Bull. Soc. Chim. biol. Paris 34, 498 (1952d).PubMedGoogle Scholar
  17. Ernst, P.: Z. Hyg. 4, 25 (1888).Google Scholar
  18. Grimme, A.: Z. Bakter. 1, 32, 161 (1902).Google Scholar
  19. Guillermond, A.: Bull. Inst. Pasteur 4, 145 (1906).Google Scholar
  20. Hanby, W. E., and H. N. Rydon: The capsular substance of Bacillus anthracis. Biochemic. J. 40, 297 (1946).Google Scholar
  21. Hardin, M. B.: The presence of metaphosphoric acid in cottonseed meal. Carolina Agricult. Exper. Stat. Bull., New ser. 10 (1892).Google Scholar
  22. Hoffmann-Ostenhof, O., J. Kenedy, K. Keck, O. Gabriel u. H. W. Schönfellinger: Ein neues phosphatübertragendes Ferment aus Hefe. Biochim. et Biophysica Acta 14, 285 (1954).Google Scholar
  23. Hoffmann-Ostenhof, O., u. W. Weigert: Über die mögliche Funktion des polymeren Metaphosphats als Speicher energiereichen Phosphats in der Hefe. Naturwiss. 39, 303 (1952).Google Scholar
  24. Houlahan, M. B., and H. K. Mitchell: The accumulation of acidlabile, inorganic phosphate by mutant of Neurospora. Arch. of Biochem. 19, 257 (1948).Google Scholar
  25. Ingelman, B.: Metaphosphate and its enzymatic breakdown. Dans: Sumner-Myrbäck, The enzymes, vol. I, part 1, p. 511–516. New York: Academic Press 1950.Google Scholar
  26. Ingelman, B.:Isolation of polymetaphosphate of high molecular weight from Aspergillus niger. Svensk. kem. Tidskr. 60, 222 (1948).Google Scholar
  27. Ingelman, B., and H. Malmgren: Enzymatic breakdown of polymetaphosphate. Acta chem. scand. (Copenh.) 1, 422–432 (1947); 2, 365–380 (1948); 3, 157–162 (1949).Google Scholar
  28. Ingelman, B., and H. Malmgren: Investigations of high molecular weight isolated from Aspergillus niger. Acta chem. scand. (Copenh.) 4, 478–486 (1950a).Google Scholar
  29. Jeener, R., et J. Brachet: Recherches sur la synthèse de l’acide pentosenucléique par les levures. Relations avec la fermentation et la respiration. Bull. Cl. Sci. Acad. roy. Belg. 29, 476 (1943).Google Scholar
  30. Jones, L. T.: Estimation of ortho-, pyro-, meta- and polyphosphates in the presence of one another. Industr. Engin. Chem., Anal. Ed. 14, 536 (1942).Google Scholar
  31. Juni, E., M. D. Kamen, S. Spiegelman and J. M. Wiame: Physiological heterogenety of metaphosphate in yeast. Nature (Lond.) 160, 717 (1947).Google Scholar
  32. Kitasato, T.: Über Meta-phosphatase. Biochem. Z. 197, 257 (1928).Google Scholar
  33. Kossel, A.: Über die Nucleinsäure. Arch. f. Physiol. 160, (1893).Google Scholar
  34. Kunitz, M.: Isolation of cristallin pyrophosphatase from baker’s yeast. J. Amer. Chem. Soc. 73, 1387 (1951).Google Scholar
  35. Lamm, O.: Notiz über die Ladungseffekte bei Sedimentations- und Diffusionsmessung und die Molekulargewichtsbestimmung an hochmolekularen Metaphosphaten. Ark. Kemi (Stockh.) A 18, Nr 8 (1944).Google Scholar
  36. Lamm, O., u. H. Malmgren: Z. anorg. Chem. 245, 103 (1940).Google Scholar
  37. Lamm, O., u. H. Malmgren: Messung und Berechnung von Sedimentations-Gleichgewichten an hochmolekularen Metaphosphaten. Ark. Kemi (Stockh). A 17, Nr 26 (1944).Google Scholar
  38. Liebermann, O.: Über Nuclein. Pflügers Arch. 43 97 et 1890 (1888).Google Scholar
  39. Lindegren, C. C.: Function of volutin (metaphosphate) in mitosis. Nature (Lond.) 159, 63 (1947).Google Scholar
  40. The yeast cell. Saint-Louis: Educational Publisher 1949.Google Scholar
  41. Lindegren, C. C.: The relation of metaphosphate formation to cell division in yeast. Exper. Cell. Res. 2, 275 (1951).Google Scholar
  42. Lison, L.: Histochimie animale. Paris: Masson & Cie. 1936.Google Scholar
  43. MacFarlane Phosphorylation in living yeast. Biochemic. J. 30, 1369–1379 (1936).Google Scholar
  44. Malmgren, H.: A contribution to the physical chemistry of colloïdal metaphosphate. Acta chem. scand. (Copenh.) 2, 147–165 (1948).Google Scholar
  45. Malmgren, H.: Enzymatic breakdown of polymetaphosphate. IV. The activation and the inhibition of the enzyme. Acta chem. scand. (Copenh.) 3, 1331–1342 (1949).Google Scholar
  46. Malmgren, H., u. O. Lamm: Dispersitätsmessungen an hochmolekularen Kalium-metaphosphaten. Z. anorg. Chem. 252, 255 (1944).Google Scholar
  47. Mann, Y.: Studies on the metabolism of mould fungi. Biochemie. J. 38, 339, 345 (1944).Google Scholar
  48. Massart, L., R. Conssens et M. Silver: Métachromasie et structure des acides nucléiques. Bull. Soc. Chim. biol. Paris 33, 514 (1951).PubMedGoogle Scholar
  49. Meyer, A.: Bot. Z. 62, 113 (1904).Google Scholar
  50. Meyerhof, O., and P. Ohlmeyer: Purification of adenosinetriphosphatase of yeast. J. of Biol. Chem. 195, II (1952).Google Scholar
  51. Meyerhof, O., R. Statas and A. Kaplan: Heat of hydrolysis of trimetaphosphate. Biochim. et Biophysica Acta 12, 121 (1953).Google Scholar
  52. Michaelis, L., and S. Granick: Metachromasy of basic dyestuffs. J. Amer. Chem. Soc. 67, 1212 (1945).Google Scholar
  53. Neisser, A.: Z. Hyg. 4, 165 (1888).Google Scholar
  54. Neuberg, C., u. H. A. Fischer: Über die enzymatische Spaltung von Triphosphorsäure. III. Hydrolyse durch tierische Fermente. Enzymologia (Den Haag) 2, 241 (1937–1938).Google Scholar
  55. Neugnot: Com. pers. 1950.Google Scholar
  56. Nickerson, W. J.: Dependance in yeast of phosphate uptake and polymerization upon the occurence of glucose polymerization. Experientia (Basel) 5, 202 (1949).Google Scholar
  57. Niemierko, S., and W. Niemierko: Metaphosphate in the excreta of the wax-moth, Galleria mellonella. Nature (Lond.) 166, 268 (1950).Google Scholar
  58. Niemierko, S., and W. Niemierko: Studies in the biochemistry of waxmoth (Galleria mellonella), 6, Metaphosphate in the excreta of Galleria mellonella. Acta Biol, exper. (Pol.) 15, 111 (1950).Google Scholar
  59. Perlman, G.: On the preparation of cristallized egg albumine metaphosphate. Biochemie. J. 32, 931 (1938).Google Scholar
  60. Samuelson, O.: Cité par Ebel 1952a. Svensk. kem. Tidskr. 56, 343 (1944).Google Scholar
  61. Schmidt, G.: The biochemistry of inorganic pyrophosphates and metaphosphates. Dans: McElroy, W. D., and Bentley Glass, Phosphorous metabolism. Vol.1. Baltimore: John Hopkins Press 1951.Google Scholar
  62. Schmidt, G., L. Hecht and S. J. Thannhauser: The enzymatic formation and the accumulation of large amounts of metaphosphate in bakers veast under certain conditions. J. of Biol. Chem. 166, 775 (1946).Google Scholar
  63. Smith, I. W., J. F. Wilkinson and J. P. Duguid: Volutin production in Aerobacter aerogenes due to nutrient imbalence. J. Bacter. 68, 450 (1954).Google Scholar
  64. Vishniac, W.: Antagonism between sodium tripolvphosphate and adenosine-triphosphate in yeast. Arch. of Biochem. 26, 167 (1950).Google Scholar
  65. Wazer, J. R. van, and K. A. Holst: Structure and properties of the condensed phosphates. J. Amer. Chem. Soc. 72, 639, 906 (1950).Google Scholar
  66. Wiame, J. M.: Sur l’existence d’un nouveau composé phosphoré dans la levure. C. r. Soc. Biol. Paris 139, 784 (1945).PubMedGoogle Scholar
  67. Wiame, J. M.:Remarques sur la métachromasie des cellules de levure. C. r. Soc. Biol. Paris 140. 897 (1946).Google Scholar
  68. Wiame, J. M.:Sur la présence d’un dérivé nucléique polyphosporé dans la levure. C. r. Soc. Biol. Paris 140, 825 (1946).Google Scholar
  69. Wiame, J. M.:Etude d’une substance polyphosphorée, basophile et métachromatique chez les levures. Biochim. et Biophysica Acta 1, 234 (1947a).Google Scholar
  70. Wiame, J. M.:The metachromatic reaction of hexametaphosphate. J. Amer. Chem. Soc. 69, 3146 (1947b).Google Scholar
  71. Wiame, J. M.:Yeast metaphosphate. Federat. Proc. 6, No I (1947 c).Google Scholar
  72. Wiame,J. M.:Métaphosphate et corpuscules métachromatiques chez la levure. Rev. Ferm. et Ind. Alim. 3, 83 (1948).Google Scholar
  73. Wiame, J. M.:The occurrence and physiological behavior of two metaphosphate fractions in yeast. J. of Biol. Chem. 178. 919 (1949).Google Scholar
  74. Wiame, J. M., et P. H. Lefebvre: Condition de formation dans la levure, d’un composé nucléique polyphosphoré. C. r. Soc. Biol. Paris 140, 921 (1946).Google Scholar
  75. Winder, F. and J. M. Denneny: Metaphosphate in mycobacterial metabolism. Nature (Lond.) 174, 353 (1954).Google Scholar
  76. Winder, F. and J. M. Denneny: Utilization of metaphosphate for phosphorylation by cell-free extracts of Mycobacterium smegmatis. Nature (Lond.) 175, 636 (1955).Google Scholar
  77. Yoshida, A.: Biochemical studies on metaphosphate. Sci. Pap. Coll. Gen. Educ. Univ. Tokyo 3, 151 (1953b).Google Scholar
  78. Yoshida, A.: Studies on metaphosphate. II. Heat of hydrolysis of metaphosphate extracted from yeast cells. J. of Biochem. (Japon) 42, 163 (1955).Google Scholar
  79. Yoshida, A., and A. Yamataka: On the metaphosphate of yeast. I. J. of Biochem. 40, 85 (1953 a).Google Scholar

2. Phytine

  1. Albaum, H. G., and W. W. Umbreit: Phosphorus transformations during the development of the oat embryon. Amer. J. Bot. 30, 553 (1943).Google Scholar
  2. Anderson, R. J.: J. of Biol. Chem. 17, 141, 151, 165, 171 (1914); 18, 441 (1914); 20, 441 (1915); 43, 469 (1920); 44, 429 (1920).Google Scholar
  3. Barré, E.: Préparation et purification des protéines des amandes. Bull. Soc. Chim. biol. Paris 33, 1473 (1951).PubMedGoogle Scholar
  4. Becker, M.: Cité par Dangschat 1955.Google Scholar
  5. Bigwood, E. J.: Observations concernant l’acide phytique du graine de froment. Bull. Soc. chim. biol. Paris 33, 1261 (1951).PubMedGoogle Scholar
  6. Bourdillon, J.: A cristalline bean seed proteine in combination with phytic acid. J. of Biol. Chem. 189, 65 (1951).Google Scholar
  7. Bruce, H. M., and R. K. Callow: Cereals and rickets. The role of inositolhexaphosphoric acid. Biochemic. J. 28, 517 (1934).Google Scholar
  8. Courtois, J.E.: Les esters phosphoriques de l’inositol. Bull. Soc. Chim. bil. 33, 1075 (1951).Google Scholar
  9. Courtois, J. E., et Ch. Perez: Recherches sur la phytase. VIII. Teneur en inosito-phosphates et activité phytasique de diverses graines. Bull. Soc. Chim. biol. Paris 30, 195 (1948a).Google Scholar
  10. Dangshat, G.: Inosite und verwandte Naturstoffe. Dans: Paech-Tracey, Moderne Methoden der Pflanzenanalyse. Heidelberg: Springer 1955.Google Scholar
  11. Davis, B. C., and E. S. Mingioli: Aromatic biosynthesis. VIL Accumulation of two derivatives of shikimic acid by bacterial mutants. J. Bacter. 66, 129 (1953).Google Scholar
  12. Folch, J.: Brain diphosphoinositide, a new phosphatide having inositol metadiphosphate as a constituent. J. of Biol. Chem. 177, 505 (1949).Google Scholar
  13. Guillemet, R.: Cité par Courtois 1951.Google Scholar
  14. Biol Med. 35, 88 (1946).Google Scholar
  15. Heggen, M., u. J. Reith: Acta pharmac. internat. 1, 133 (1950).Google Scholar
  16. Heubner, W., u. M. Stadler: Biochem. Z. 64, 422 (1914).Google Scholar
  17. Lindenfeld, K.: Über die Gewinnung von Inositol aus inosit-phosphorsauren Salzen. Biochem. Z. 272, 284 (1934).Google Scholar
  18. MacCance, R., and W. J. S. Pringle: Biochem. J. 39, 3, 123, (1945).Google Scholar
  19. MacCance, R., and E. Widdowson: Biochemie. J. 29, 2694 (1935).Google Scholar
  20. MacCance, R., and E. Widdowson: Activity of the phytase in different cereals and its resistance to dry heat. Nature (Lond.) 153, 650 (1944).Google Scholar
  21. Neuberg, C: Cité par Courtois 1951.Google Scholar
  22. Neuberg, C: Biochem. Z. 5, 443 (1907); 9, 551, 557 (1908).Google Scholar
  23. Palladia, W.: Cité par Courtois 1951.Google Scholar
  24. Palladia, W.: Z. Biol. 13, 191 (1895).Google Scholar
  25. Pfeffer, E.: Cité par Courtois 1951.Google Scholar
  26. Pfeffer, E.: Pringsheim Jb. wiss. Bot. 8, 429 et 475 (1872).Google Scholar
  27. Posternak, S.: Sur la synthèse de l’acide inosito-hexaphosphorique. Helvet. chim. Acta 4, 150 (1921).Google Scholar
  28. Posternak, S., et Th. Posternak: Sur la configuration de l’inosite inactive. Helvet. chim. Acta 12, 1165 (1929).Google Scholar
  29. Rapaport, S.: J. of Biol. Chem. 135, 403 (1940).Google Scholar
  30. Sanfourche, A.: Recherches sur l’acide phosphorique et les phosphates. I. La formation des phosphates alcalino-terreux basiques. Bull. Soc. chim. France 53, 951 (1933).Google Scholar
  31. Sanfourche, A.: Préparation et propriétés du phosphate neutre de lithium. C. r. Acad. Sci. Paris 206, 1820 (1938).Google Scholar
  32. Smith, D. H.: Chromatographie separation of soil org. compounds. Iowa State Coll. J. Sci. 26, 287 (1952).Google Scholar
  33. Starkenstein, E.: Biochem. Z. 30, 56 (1910).Google Scholar
  34. Winterstein Cité par Courtois 1951. Ber. dtsch. chem. Ges. 30, 2299 (1897).Google Scholar
  35. Yang, E. K.: Ionization of calcium phytate. Nature (Lond.) 145, 745 (1940).Google Scholar
  1. Acker, L., u. G. Ernst: Über das Vorkommen eines phosphatidspaltenden Ferments in Cerealien. Biochem. Z. 325, 253–257 (1954).PubMedGoogle Scholar
  2. Anderson, R. J.: The chemistry of the lipids f the tubercle bacillus and certain other microorganisms. Fortschr. Chem. organ. Naturstoffe 3, 145–202 (1939).Google Scholar
  3. Barbier, M., and E. Lederer: Sur un acide aminé du phosphatide de Mycobacterium phlei. Biochim. et Biophysica Acta 8, 590–591 (1952).Google Scholar
  4. Channon, H. J., and C. A. M. Foster: The phosphatides of wheat germ. Biochemic. J. 28, 853–864 (1934).Google Scholar
  5. Chargaff, E.: Über das Fett und das Phosphatid der Diphtheriebakterien. Hoppe-Seylers Z. 218, 223–240 (1933).Google Scholar
  6. Cmelik, S.: Über Bakterienlipoide. III. Untersuchung verschiedener Lipoidfraktionen von Salmonella paratyphi C. Hoppe-Seylers Z. 296, 67–73 (1954).Google Scholar
  7. Crowder, J. A., and R. J. Anderson: A contribution to the chemistry of Lactobacillus acidophilus. III. The composition of the phosphatide fraction. J. of Biol. Chem. 104, 487–495 (1934).Google Scholar
  8. Ducet, G.: La choline des vegetaux. Internat. Congr. Biochem. Abstr. of Communications. 1. Congr. Cambridge, Engl. 1949, p. 495–496.Google Scholar
  9. Geiger, W. B. jr., and R.J. Anderson: The chemistry of Phytomonas tumefaciens. I. The lipids of Phytomonas tumefaciens. The composition of the phosphatide. J. of Biol. Chem. 129, 519–529 (1939).Google Scholar
  10. Gubarev, E.M., E.K. Lubenets and Y.V. Galaev: Chemical composition of some fractions of lipids of diphtheria bacteria. Biochimija 18, 37–46 (1953).Google Scholar
  11. Hanahan, D. J., and I. L. Chaikoff: On the nature of the phosphorus-containing lipides of cabbage leaves and their relation to a phospholipide-splitting enzyme contained in these leaves. J. of Biol. Chem. 172, 191–198 (1948).Google Scholar
  12. Hawthorne, J. N., and E. Chargaff: A study of inositol-containing lipides. J. of Biol. Chem. 206, 27–37 (1954).Google Scholar
  13. Hayaishi, O., and A. Kornberg: Metabolism of phospholipides by bacterial enzymes. J. of Biol. Chem. 206, 647–663 (1954).Google Scholar
  14. Houget, J.: Sur le mécanisme de la transformation des lipides en glucides au cours de la germination du ricin. C. r. Acad. Sci. Paris 216, 821–822 (1943).Google Scholar
  15. Kates, M.: Lecithinase activity of chloroplasts. Nature (Lond.) 172, 814–815 (1953).Google Scholar
  16. Macfarlane, M. G., and B. C. J. G. Knight: The biochemistry of bacterial toxins. I. The lecithinase activity of Cl. welchii toxins. Biochemic. J. 35, 884–902 (1941).Google Scholar
  17. Malkin, T., and A. G. Poole: The structure of the glyceroinositophosphatide of ground nut. J. Chem. Soc. 1953, 3470–3478.Google Scholar
  18. Mazelis, M., and P.K. Stumpf: Fat metabolism in higher plants. VI. Incorporation of P32 into peanut mitochondrial phospholipids. Plant Physiol. 30, 237–243 (1955).PubMedGoogle Scholar
  19. Pudles, J.: Étude chimique des lipides du bacille diphtherique. Thesis, Faculty of Sciences, University of Paris, for the degree of Docteur de l’Université 1953.Google Scholar
  20. Scholfield, C. R., H. J. Dutton and R. J. Dimler: Carbohydrate constituents of soybean “lecithin”. J. Amer. Oil Chem. Soc. 29, 293–298 (1952).Google Scholar
  21. Scholfield, C. R., H. J. Dutton, F. W. Tanner jr. and J. C. Cowan: Components of soybean “lecithin”. J. Amer. Oil Chem. Soc. 25, 368–372 (1948).Google Scholar
  22. Smith, R. H.: The phosphatides of the latex of Hevea brasiliensis. 3. Carbohydrate and polyhydroxy constituents. Biochemie. J. 57, 140–144 (1954).Google Scholar
  23. Sütö-Nagy, G. I. de, and R. J. Anderson: The chemistry of the lipides of tubercle bacilli. LXXVI. Concerning inositol glycerol diphosphoric acid, a component of the phosphatide of human tubercle bacilli. J. of Biol. Chem. 171, 761–765 (1947).Google Scholar
  24. Takahashi, H.: Bacterial components of Corynebacterium diphtheriae. V. Phospholipids. II. Structure of Chargaff’s corynin. J. Pharmaceut. Soc. Jap. 68, 292–296 (1948)Google Scholar
  25. Entner, N., and M. Doudoroff: Glucose and gluconic acid oxidation of Pseudomonas saccharophila. J. of Biol. Chem. 196, 853–862 (1952).Google Scholar
  26. Gunsalus, I. C., B. L. Horbcker and W. A. Wood: Pathways of carbohydrate metabolism in microorganisms. Bacter. Rev. 19, 79–128 (1955).Google Scholar
  27. Kalan, E. B., and P. B. Srinivasan: Synthesis of 5-dehydro-shikimic acid from carbohydrates in a cell-free extract. Amino Acid Metabolism, p. 826–830. Edit. by W. D. McElroy and B. Glass. Baltimore, Md.: Johns Hopkins University Press 1955.Google Scholar
  28. Kovachevich, R., and W. A. Wood: [1] Carbohydrate metabolism of Pseudomonas fluorescens. III. Purification and properties of a 6-phosphogluconate dehydrase. J. of Biol. Chem. 213, 745–756 (1955).Google Scholar
  29. Kovachevich, R., and W. A. Wood: [2] Carbohydrate metabolism of Pseudomonas jluorescens, IV. Purification and properties of 2-keto-3-deoxy-6-phosphogluconate aldolase. J. of Biol. Chem. 213:757–767 (1955).Google Scholar
  30. MacGee, J., and M. Doudoroff: A new phosphorylated intermediate in glucose oxidation. J. of Biol. Chem. 210, 617–626 (1954).Google Scholar
  31. Mortensen, L. E., and P. W. Wilson: Initial steps in breakdown of glucose by the azotobacter. Bacter. Proc. 1954, 108.Google Scholar
  32. Rapoport, S., and R. H. Wagner: A phosphate ester of a tricarboxylic acid in liver. Nature (Lond.) 168, 295–296 (1951).Google Scholar
  33. Umbreit, W. W.: The action of streptomycin. VI. A new metabolic intermediate. J. Bacter. 66, 74–81 (1953).Google Scholar
  34. Weissbach, A., P. Z. Smyrniotis and B. L. Horecker: The enzymatic formation of ribulose diphosphate. J. Amer. Chem. Soc. 76:5572–5573 (1954).Google Scholar
  35. Albaum, H. G.: The incorporation of radiophosphorus during growth. Symposium on phosphorus metabolism. Mich. State College Press, 55, East Lansing, Mich., 1952.Google Scholar
  36. Albaum, H. G., and R. Lipshitz: Determination of adenosine triphosphate based on deamination rates. Arch. of Biochem. 27:102 (1950).Google Scholar
  37. Albaum, H. G., M. Ogur and A. Hirshfeld: The isolation of adenosine triphosphate from plant tissue. Arch. of Biochem. 27:130 (1950).Google Scholar
  38. Albaum, H. G., A. Schatz, S. H. Hutner and A. Hirshfeld: Phosphorylated compounds in Euglena. Arch. of Biochem. 29, 210 (1950).Google Scholar
  39. Albaum, H. G., and R. Scher: Paper chromatography of phosphorylated intermediates. (Unpublished Experiments).Google Scholar
  40. Albaum, H. G., and W. W. Umbreit: Phosphorus transformations during the development of the oat embryo. Amer. J. Bot. 30, 553 (1943).Google Scholar
  41. Anderson, D. G., H. A. Stafford, E. E. Conn and B. Vennesland: The distribution in higher plants of triphosphopyridine nucleotide-linked enzyme systems capable of reducing glutathione. Plant Physiol. 27, 675 (1952).PubMedGoogle Scholar
  42. Arney, S. E.: Phosphate fractions in barley seedlings. Biochemic. J. 33, 1078 (1939).Google Scholar
  43. Arnon, D. I.: The glycolytic cycle in the breakdown and synthesis of carbohydrates in green leaves. A symposium on phosphorus metabolism, Vol. 2:67. Baltimore, Md. 1952.Google Scholar
  44. Axelrod, B., and R. S. Bandurskt: Phosphoglyceryl kinase in higher plants. J. of Biol. Chem. 204:939 (1953).Google Scholar
  45. Axelrod, B., R. S. Bandurski, C. M. Greiner and R. Jang: The metabolism of hexose and pentose phosphates in higher plants. J. of Biol. Chem. 202, 619 (1953).Google Scholar
  46. Axelrod, B., R. S. Bandtjrski and P. Saltman: Phosphate uptake by pea meal extracts. Federat. Proc. 10, 158 (1951).Google Scholar
  47. Axelrod, B., and R. Jang: Purification and properties of phosphoriboisomerase from alfalfa. J. of Biol. Chem. 209, 847 (1954).Google Scholar
  48. Axelrod, B., P. Saltman, R. S. Bandtjrski and R. S. Baker: Phosphohexokinase in higher plants. J. of Biol. Chem. 197, 89 (1952).Google Scholar
  49. Bandtjrski, R. S., and B. Axelrod: The chromatographic identification of some biologically important phosphate esters. J. of Biol. Chem. 193, 405 (1951).Google Scholar
  50. Bandtjrski, R. S., C. M. Greiner and J. Bonner: Enzymatic carboxylation of phosphoenolpyruvate to oxalacetate. Federat. Proc. 12, 173 (1953).Google Scholar
  51. Barnett, R. C., H. A. Stafford, E. E. Conn, and B. Vennesland: Phosphogluconic dehydrogenase in higher plants. Plant Physiol. 28:115 (1953).PubMedGoogle Scholar
  52. Benson, A. A. et al.: Local citation 1950.Google Scholar
  53. Benson, A. A., J. A. Bassham and M. Calvin: Sedoheptulose in photosynthesis by plants. J. Amer. Chem. Soc. 73, 2970 (1951).Google Scholar
  54. Benson, A. A., J. A. Bassham, M. Calvin, T. C. Goodale, V. A. Haas and W. Stepka: The path of carbon in photosynthesis. V. Paper chromatography and radio-autography of the products. J. Amer. Chem. Soc. 72, 1710 (1950).Google Scholar
  55. Benson, A. A., S. Kawaguchi, P. Hayes and M. Calvin: The path of carbon in photosynthesis. XVI. Kinetic relationships of th intermediates in steady state photosynthesis. J. Amer. Chem. Soc. 74:4477 (1952).Google Scholar
  56. Buchanan, J. G.: The path of carbon in photosynthesis. XIX. The identification of sucrose phosphate in sugar beet leaves. Arch. of Biochem. a. Biophysics 44:140 (1953).Google Scholar
  57. Calvin, M., and A. A. Benson: The path of carbon in photosynthesis. IV. The identity and sequence of the intermediates in sucrose synthesis. Science (Lancaster, Pa.) 109, 140–142 (1949).Google Scholar
  58. Campbell, J. M., and R. S. Bandtjrski: Adenylate kinase in plant tissue. Amer. Soc. Plant Physiol. (AIBS), Sept. 1952 (Abstr.)Google Scholar
  59. Cardini, C. E.: Activation of plant phospho-glucomutase by Glucose 1.6 diphosphate. Enzymologia (Den Haag) 15:44 (1951).Google Scholar
  60. Conn, E. E., and B. Vennesland: Glutathione reductase of wheat germ. J. of Biol. Chem. 192:17 (1951).Google Scholar
  61. Dickens, F.: Oxidation of phosphohexonate and pentose phosphoric acids by yeast enzymes. I. Oxidation of phosphohexonate. II. Oxidation of pentose phosphoric acids. Biochemic. J. 32, 1626 (1938).Google Scholar
  62. Doudoroff, M., N. Kaplan and W. Z. Hassid: Phos-phorolysis and synthesis of sucrose with a bacterial preparation. J. of Biol. Chem. 148:67–75 (1943).Google Scholar
  63. Emerson, R. L., J. F. Stauffer and W. W. Umbreit: Relationships between phosphorylation and photosynthesis in Chlorella. Amer. J. Bot. 31, 107 (1944).Google Scholar
  64. Gibbs, M., and B. L. Horecker: The mechanism of pentose phosphate conversion to hexose monophosphate. II. With pea leaf and pea root preparations. J. of Biol. Chem. 208:813 (1954).Google Scholar
  65. Hageman, R. H., and D. I. Arnon: The isolation of triosephosphate dehydrogenase from pea seeds. Arch. of Biochem. a Biophysics 55:162 (1955).Google Scholar
  66. Hanes, C. S.: The breakdown and synthesis of starch by an enzyme system from pea seeds. Proc. Roy. Soc. Lond., Ser. B 128:421 (1939).Google Scholar
  67. Hanes, C. S.: The reversible formation of starch from glucose-1-phosphate catalysed by potato Phosphorylase. Proc. Roy. Soc. Lond., Ser. B 129, 174 (1940).Google Scholar
  68. Hardin, M. B.: On the occurrence of meta-phosphoric acid and pyrophosphoric acid in cotton seed meal. S. Carolina Exper. Sta. Bull. 8:10 (1892).Google Scholar
  69. Hassid, W. Z.: Isolation of a hexose-monophosphate from pea leaves. Plant Physiol. 13:641 (1938).PubMedGoogle Scholar
  70. Heard, C. R. C.: On phosphoric esters in barley. New Phytologist 44:184 (1945).Google Scholar
  71. Horecker, B. L., M. Gibbs, H. Klenow and P. Z. Smyrniotis: The mechanism of pentose phosphate conversion to hexose monophosphate. I. With a liver enzyme preparation. J. of Biol. Chem. 207:393 (1954).Google Scholar
  72. Horecker, B. L., and P. Z. Smyrniotis: The enzymatic formation of sedoheptulose phosphate from pentose phosphate. J. Amer. Chem. Soc. 74:2123 (1952).Google Scholar
  73. Horecker, B. L., P. Z. Smyrniotis and H. Klenow: The formation of sedoheptulose phosphate from pentose phosphate. J. of Biol. Chem. 205:661 (1953).Google Scholar
  74. James, W. O., and S. E. Arney: Phosphorylation and respiration in barley. New Phytologist 38:340 (1939).Google Scholar
  75. Leloir, L. F.: The metabolism of hexosephosphates. A symposium on Phosphorus metabolism, Vol. I, 67. 1951.Google Scholar
  76. LePage, G. A., and W. W. Umbreit: Phosphorylated carbohydrate esters in autotrophic bacteria. J. of Biol. Chem. 147, 263 (1943).Google Scholar
  77. Ramasarma, T., Sri J. Ram and K. V. Giri: Phosphoglucomutase of green gram (Phaselolus radiatus). Arch. of Biochem. a. Biophysics 53:167 (1954).Google Scholar
  78. Rapoport, S.: Über die Bestimmung der Glycerinsäure in freier und veresterter Form. Biochem. Z. 289:406 (1937).Google Scholar
  79. Robison, R., M. S. MacFarlane and A. Tazclaar: A new phosphoric ester isolated from the products of yeast juice fermentation. Nature (Lond.) 142, 114 (1938).Google Scholar
  80. Roe, J. H.: A colorimetric method for the determination of fructose in blood and urine. J. of Biol. Chem. 107, 15 (1934).Google Scholar
  81. Saltman, P.: Hexokinase in higher plants. J. of Biol. Chem. 200, 145 (1953).Google Scholar
  82. Somers, G.F., and E.L. Cosby: The conversion of fructose-6-phosphate into glucose-6-phosphate in plant extracts. Arch. of Biochem. 6:295 (1945).Google Scholar
  83. Stafford, H., R. C. Barnett, E. E. Conn and B. Vennesland: The oxidation of monosaccharides by TPN dependent enzymes. Amer. Soc. Plant Physiol. (AIBS) Sept. 1952 (Abstr.).Google Scholar
  84. Stumpf, P. K.: Carbohydrate metabolism in higher plants. I. Pea aldolase. J. of Biol. Chem. 176, 233 (1948).Google Scholar
  85. Stumpf, P. K.: Carbohydrate metabolism in higher plants. III. Breakdown of fructose diphosphate by pea extracts. J. of Biol. Chem. 182:261 (1950).Google Scholar
  86. Stumpf, P. K.: Fat metabolism in higher plants. III. Enzymic oxidation of glycerol. Plant Physiol. 30:55 (1955).PubMedGoogle Scholar
  87. Sumner, J. B., and G. F. Somers: The preparation of glucose-1-phosphate. Arch. of Biochem. 4:11 (1944).Google Scholar
  88. Tewfik, S., and P. K. Stumpf: Carbohydrate metabolism in higher plants. II. The distribution of aldolase in plants. Amer. J. Bot. 36:567 (1949).Google Scholar
  89. Tewfik, S., and P. K. Stumpf: Carbohydrate metabolism in higher plants. J. of Biol. Chem. 192, 519 (1951).Google Scholar
  90. Zill, L. P., and A. R. Krall: Phosphorylated compounds in plants: Separation in groups by ion-exchance chromatography. Amer. Soc. Plant Physiol. (AIBS), Gainesville, Sept. 1954 (Abstr.).Google Scholar
  91. Allinson, M. J. C.: Spezific enzymic method for the determination of nicotinic acid in blood. J. of Biol. Chem. 147, 785–791 (1943).Google Scholar
  92. Arnon, D. J.: Extracellular photosynthetic reaction. Nature (Lond.) 167, 1008–1010 (1951).Google Scholar
  93. Beadle, G. W., H. K. Mitchell and J. F. Nyc: Kynurenine as an intermediate in the formation of nicotinic acid from tryptophan by Neurospora. Proc. Nat. Acad. Sci. U.S.A. 33:155–158 (1947).Google Scholar
  94. Bonner, I. M., and C. Yanofsky: Quinolinic acid accumulation in the conversion of 3-hydroxyanthranilic acid to niacin in Neurospora. Proc. Nat. Acad. Sci. U.S.A. 35:576–581 (1949).Google Scholar
  95. Castro, F. T. de, J. M. Price and R. R. Brown: Reduced triphosphopyridinnucleotide requirement for the enzymatic formation of 3-hydroxykynurenin from 1-kynurenin. J. Amer. Chem. Soc. 78:2904–2905 (1956).Google Scholar
  96. Chitre, R. G., D. B. Desai and V. S. Raut: Die Biosynthese der Nicotinsäure in keimenden Getreidesorten und Hülsenfrüchten. Proc. Soc. Biol. Chem., India 13:17–18 (1955). Zit. nach Chem. Zbl. 1955:6429.Google Scholar
  97. Colowick, S. P., N. O. Kaplan, E. F. Neufeld and M. Ciotti: Pyridine nucleotide transhydrogenase. I. Indirect evidence for the reaction and purification of the enzyme. J. of Biol. Chem. 195, 95–105 (1952).Google Scholar
  98. Ellinger, P.: Fate of nicotinamide methochloride and the effect of liver poisons on its elimination rate in the rat. Biochemic. J. 41:308–314 (1947).Google Scholar
  99. Ellinger, P., G. Fraenkel and M. M. Abdel Kader: Utilization of nicotinamide derivates and related compounds by mammals, insects and bacteria. Biochemic. J. 41, 559–568 (1947).Google Scholar
  100. Elvehjem, C. A., R. J. Madden, F. M. Strong and D. W. Woolley: The isolation and identification of the antiblacktongue factor. J. of Biol. Chem. 123:137–149 (1938).Google Scholar
  101. Euler, H. v., u. E. Adler: Über die gegenseitige enzymatische Umwandlung von Codehydrase I und Codehydrase II. Z. physiol. Chem. 252:41–48 (1938).Google Scholar
  102. Euler, H. v., u. H. Albers: Über die Komponenten der Dehydrasesysteme. IX. Die Co-Dehydrasen: Co-Zymase und Co-Dehydrase II. Co-Zymase als Wasserstoffüberträger. Z. physiol. Chem. 238:233–260 (1936).Google Scholar
  103. Fouts, P. J., O. M. Helmer, S. Lepkowski and T. H. Jukes: Die Behandlung menschlicher Pellagra mit Nicotinsäure. Proc. Soc. Exper. Biol. a. Med. 37:405–407 (1937). Zit. nach Chem. Zbl. 1938 I, 2576.Google Scholar
  104. Gingrich, W. D., and F. Schlenk: Codehydrogenase I and other pyridinium compounds as V-factor for Hemophilus influenzae and H. parainfluenzae. J. Bacter. 47, 535–550 (1944).Google Scholar
  105. Guggenheim, M.: Die biogenen Amine. Basel: S. Karger 1951.Google Scholar
  106. Gustafson, F. G.: Tryptophan as an intermediate in the synthesis of nicotinic acid by green plants. Science (Lancaster, Pa.) 110, 279–280 (1949).Google Scholar
  107. Harden, A., and W. J. Young: Das alkoholische Ferment des Hefesaftes. Proc. Roy. Soc. Lond., Ser. B 77, 405–420 (1906). Zit. nach Chem. Zbl. 1906 I, 1625.Google Scholar
  108. Hasse, K.: Codehydrasen I und II. In: Moderne Methoden der Pflanzenanalyse. Herausgeg. von K. Paech u. M. V. Tracey, Bd. 4, S. 320–344. Berlin-Göttingen-Heidelberg: Springer 1955.Google Scholar
  109. Hasse, K.: Pyridinnucleotid-dehydrogenasen. In Handbuch der Pflanzenphysiologie. Herausgeg. von W. Ruhland, Bd. 12. Berlin-Göttingen-Heidelberg: Springer 1958.Google Scholar
  110. Hayaishi, O.: Kynureninase of Pseudomonas fluoresceins. J. of Biol. Chem. 195, 735–740 (1952).Google Scholar
  111. Heidelberger, C., M. E. Gullberg, A. F. Morgan and S. Tepkowski: Concering the mechanism of the mammalian conversion of tryptophan into kynurenine, kynurenic acid and nicotinic acid. J. of Biol. Chem. 175, 471–472 (1948).Google Scholar
  112. Henderson, L. M., and H. M. Hirsch: Quinolinic acid metabolism. I. Urinary excretion by the rat following tryptophan and 3-hydroxyanthranilic acid administration. J. of Biol. Chem. 181:667–675 (1949).Google Scholar
  113. Henderson, L. M., and G. B. Ramasarma: Quinolinic acid metabolism. III. Formation from 3-hy-droxy-anthranilic acid by rat liver preparations. J. of Biol. Chem. 181:687–962 (1949).Google Scholar
  114. Heppel, L. A., and R. J. Hilmoe: Purification and properties of 5-nucleotidase. J. of Biol. Chem. 188:665–676 (1951).Google Scholar
  115. Heppel, L. A., and R. J. Hilmoe: Phosphorolysis and hydrolysis of purine nucleosides by enzymes from yeast. J. of Biol. Chem. 198, 683–694 (1952).Google Scholar
  116. Holman, W. I. M., and D. J. de Lange: Determination of N-methyl-2-pyridone-5-carboxylamide and of N-methyl-2-pyridone-3-carboxylamide in human urine. Biochemic. J. 45, 559–563 (1949).Google Scholar
  117. Holman, W. I. M., and D. J. de Lange: Metabolism of nicotinic acid and related compounds by humans. Nature (Lond.) 165, 604–605 (1950a).Google Scholar
  118. Holman, W. I. M., and D. J. de Lange: The determination of N-methyl-2-pyridone-5-carboxylic acid in human urine. Biochemic. J. 46, 47–49 (1950b).Google Scholar
  119. Huff, J. W., W. A. Perlzweig, R. Forth and F. Spilman: Nicotinic acid metabolism. III. Metabolism and synthesis of nicotinic acid in the rat. J. of Biol. Chem. 142, 401–416 (1942).Google Scholar
  120. Hughes, D. E.: 6-Hydroxynicotinic acid as an intermediate in the oxidation of nicotinic acid by Pseudomonas fluorescens. Biochemic. J. 60, 303–310 (1955).Google Scholar
  121. Hughes, D. E., and W. H. Williamson: The deamidation of nicotinamide by bacteria. Biochemic. J. 55, 851–856 (1953).Google Scholar
  122. Kalckar, H. M.: Enzymic synthesis of a nucleoside. J. of Biol. Chem. 158:723–724 (1945).Google Scholar
  123. Kalckar, H. M., and M. Shafran: The enzymic synthesis of purine ribosides. J. of Biol. Chem. 167, 477–486 (1947).Google Scholar
  124. Kaplan, N. O., M. M. Ciotti, F. E. Stolzenbach, and N. R. Bachner: Isolation of a DPN isomer containing nicotinamide riboside in the α-linkage. J. Amer. Chem. Soc. 77, 815 (1955).Google Scholar
  125. Kaplan, N. O., S. P. Colowick and M. M. Ciotti: Enzymatic desamination of adenosine derivates. J. of Biol. Chem. 194, 579–591 (1952).Google Scholar
  126. Kaplan, N. O., S. P. Colowick and A. Nason: Neurospora diphosphopyridine nucleotidase. J. of Biol. Chem. 191, 473–483 (1951).Google Scholar
  127. Kaplan, N. O., S. P. Colowick and E. F. Neufeld: Pyridine nucleotide transhydrogenase. II. Direct evidence for and mechanism of the transhydrogenase reaction. J. of Biol. Chem. 195, 107–119 (1952).Google Scholar
  128. Kaplan, N. O., S. P. Colowick and E. F. Neufeld: Pyridine nucleotide transhydrogenase. III. Animal tissue transhydrogenases. J. of Biol. Chem. 205:1–15 (1953).Google Scholar
  129. Kaplan, N. O., S. P. Colowick, E. F. Neufeld and M. M. Ciotti: Pyridine nucleotide transhydrogenase. IV. Effect of adenylic acid on the bacterial transhydrogenases. J. of Biol. Chem. 205:17–30 (1953).Google Scholar
  130. Kaplan, N. O., S. P. Colowick, L. J. Zatman and M. M. Ciotti: Pyridine nucleotide transhydrogenase. V. Exchange reactions studied with C14. J. of Biol. Chem. 205:31–44 (1953).Google Scholar
  131. Knox, W. E., and W. J. Grossman: A new metabolite of nicotinamide. J. of Biol. Chem. 166, 391–392 (1946).Google Scholar
  132. Knox, W. E., and A. H. Mehler: The conversion of tryptophan to kynurenine in liver. I. The coupled tryptophan peroxidase-oxidase system forming formylkynurenine. J. of Biol. Chem. 187:419–430 (1950).Google Scholar
  133. Kornberg, A.: Reversible enzymatic synthesis of diphosphopyridine nucleotide and inorganic pyrophosphate. J. of Biol. Chem. 182:779–793 (1950a).Google Scholar
  134. Kornberg, A.: Enzymatic synthesis of triphosphopyridine nucleotide. J. of Biol. Chem. 182:805–813 (1950b).Google Scholar
  135. Kornberg, A., J. Lieberman and E. S. Simms: Enzymatic synthesis of purine nucleotides. J. of Biol, Chem. 215:417–427 (1955).Google Scholar
  136. Kornberg, A., and O. Lindberg: Diphosphopyridine nucleotide pyrophosphatase. J. of Biol. Chem. 176, 665–677 (1948).Google Scholar
  137. Kornberg, A., and W. E. Pricer jr.: Nucleotide pyrophosphatase. J. of Biol. Chem. 182:763–778 (1950a).Google Scholar
  138. Kornberg, A., and W. E. Pricer jr.: The structure of triphosphopyridine nucleotide. J. of Biol. Chem. 186:557–567 (1950b).Google Scholar
  139. Kotake, Y., u. J. Iwao: Studien über den intermediären Stoffwechsel des Tryptophans. I. Mitt. Über das Kynurenin, ein intermediäres Stoffwechselprodukt des Tryptophans. Z. physiol. Chem. 195:139–147 (1931).Google Scholar
  140. Kotake, Y., u. Y. Nakayama: Studien über den intermediären Stoffwechsel des Tryptophans. XXXIV. Mitt. Über die Anthranilsäure-bildung aus Kynurenin durch Organsaft. Z. physiol. Chem. 270, 76–83 (1941).Google Scholar
  141. Kotake, Y., u. S. Otani: Studien über den intermediären Stoffwechsel des Tryptophans. XII. Mitt. Über das Kynurenin, ein intermediäres Stoffwechselprodukt des Tryptophans. Z. physiol. Chem. 214, 1–5 (1933).Google Scholar
  142. Krehl, W. A., P. S. Sarma and C. A. Elvehjem: The effect of protein on the nicotinic acid and tryptophan requirement of the growing rat. J. of Biol. Chem. 162, 403–411 (1946).Google Scholar
  143. Krehl, W. A., L. J. Tepley, P.S. Sarma and C. A. Elvehjem: Growth-retarding effect of corn in nicotinic acid-low rations and its counteraction by tryptophan. Science (Lancaster, Pa.), N. S. 101, 489–490 (1945).Google Scholar
  144. Leifer, E., L. J. Roth and D. S. Hogness: The metabolism of radioactive nicotinic acid and nicotinamide. J. of Biol. Chem. 190, 595–602 (1951).Google Scholar
  145. Lieberman, J., A. Kornberg and E. S. Simms: Enzymatic synthesis of pyrimidine nucleotides. Orotidine-5′-phosphate and uridine-5′-phosphate. J. of Biol. Chem. 215:403–415 (1955).Google Scholar
  146. Matsuoka, Z. und N. Yoshimatsu: Über eine neue Substanz, die aus Tryptophan im Tierkörper gebildet wird. Z. physiol. Chem. 143, 206–217 (1925).Google Scholar
  147. Mehler, A. H.: Formation of picolinic and quinolinic acids following enzymatic oxidation of 3-hydroxy-anthranilic acid. J. of Biol. Chem. 218:241–254 (1956).Google Scholar
  148. Mitchell, H. K., and J. F. Nyc: Hydroxy-anthranilic acid as a precursor of nicotinic acid in Neurospora. Proc. Nat. Acad. Sci. U.S.A. 34, 1–5 (1948).Google Scholar
  149. Myrbäck, K.: Co-Zymase (zusammenfassende Darstellung der bisherigen Ergebnisse über die Cozymase). In Ergebnisse der Enzymforschung. Herausgeg. von F. F. Nord u. R. Weidenhagen, Bd. 2, S. 139–168. Leipzig 1933.Google Scholar
  150. Nason, A.: Existence of a tryptophan-niacin relationship in corn. Science (Lancaster, Pa.) 109, 170–171 (1949).Google Scholar
  151. Nason, A., N. O. Kaplan and S. P. Colowick: Changes in enzymatic constitution in zink-deficient Neurospora. J. of Biol. Chem. 188:397–406 (1951).Google Scholar
  152. Quagliariello, G., e G. Porcellati: Über die enzymatische Amidierung der Nicotinsäure. Boll. Soc. ital. Biol. sper. 29:273–275 (1953). Zit. nach Chem. Zbl. 1955, 5097.PubMedGoogle Scholar
  153. Rowen, J. W., and A. Kornberg: The phosphorolysis of nicotinamide riboside. J. of Biol. Chem. 193, 497–507 (1951).Google Scholar
  154. Sanadi, D. R.: Enzymic dephosphorylation of triphosphopyridine nucleotide (TPN). Arch. of Biochem. a. Biophysics 35:268–277 (1952).Google Scholar
  155. Schlenk, F.: Enzymatic reactions involving nicotinamide and its related compounds. In: Advances in enzymology. Herausgeg. von F. F. Nord u. C. H. Werkman, Bd. 5, S. 207–236. New York: Interscience Publ. 1945.Google Scholar
  156. Schlenk, F.: Co-dehydrogenase I and II and apoenzymes. In: The enzymes. Chemistry and mechanism of action. Herausgeg. von J. B. Sumner u. K. Myrbäck, Bd. II/1, S. 250–315. New York: Academic Press 1951.Google Scholar
  157. Schlenk, F., u. H. v. Euler: Cozymase. Naturwiss. 24:794–795 (1936).Google Scholar
  158. Schopfer, W. H., and M. L. Boss: Tryptophan-nicotinic acid relationship. Production of nicotinic acid avitaminosis in an organism by vitamin K3 (2-methyl-l,4-naphthoquinone). Helvet. physiol. Acta 7, C 20–22 (1949).Google Scholar
  159. Shuster, L., and N. O. Kaplan: A specific b nucleotidase. J. of Biol. Chem. 201, 535–546 (1953).Google Scholar
  160. Singer, T. P., and E. B. Kearney: Chemistry, metabolism and scope of action of the pyridine nucleotide coenzymes. In: Advances in enzymology and related subjects. Herausgeg. von F.F. Nord, Bd. 15, S. 79–139. New York: Interscience Publ. 1954.Google Scholar
  161. Thielmann, F.: Ein Fäulnisversuch mit Trigonellin. Z. Biol. 81:208–210 (1924).Google Scholar
  162. Tolmach, L. J.: The influence of triphosphopyridine nucleotide (TPN) and other physiological substances upon oxygen evolution from illuminated chloroplasts. Arch. of Biochem. a. Biophysics 33, 120–142 (1951).Google Scholar
  163. Vishniac, W., and S. Ochoa: Fixation of carbon dioxide coupled to photochemical reduction of pyridine nucleotides by chloroplast preparations. J. of Biol. Chem. 195, 75–93 (1952 a).Google Scholar
  164. Schlenk, F.: Phosphorylation coupled to photochemical reduction of pyridine nucleotides by chloroplast preparations. J. of Biol. Chem. 198, 501–506 (1952b).Google Scholar
  165. Wang, T. P., and N. O. Kaplan: Kinases for the synthesis of coenzyme a and triphosphopyridine nucleotide. J. of Biol. Chem. 206, 311–325 (1954).Google Scholar
  166. Wang, T. P., N. O. Kaplan and F. E. Stolzenbach: Enzymatic preparation of triphosphopyridine nucleotide from diphosphopyridine nucleotide. J. of Biol. Chem. 211, 465–472 (1954).Google Scholar
  167. Warburg, O.: Chemische Konstitution von Fermenten. In: Ergebnisse der Enzymforschung. Herausgeg. von F. F. Nord u. R. Weidenhagen, Bd. 7, S. 210–245. Leipzig: Akademische Verlagsgesellschaft 1938.Google Scholar
  168. Warburg, O., u. W. Christian: Über Aktivierung der RoBisonschen Hexose-Mono-Phosphorsäure in roten Blutzellen und die Gewinnung aktivierender Fermentlösungen. Biochem. Z. 242:206–227 (1931).Google Scholar
  169. Warburg, O., u. W. Christian: Pyridin, der wasserstoffübertragende Bestandteil von Gärungsfermenten (Pyridinnucleotide). Biochem. Z. 287:291–333 (1936).Google Scholar
  170. Warburg, O., W. Christian u. A. Griese: Wasserstoffübertragendes Co-Ferment, seine Zusammensetzung und Wirkungsweise. Biochem. Z. 282:157–205 (1935).Google Scholar
  171. Warburg, O., W. Christian u. W. Schöller: Co-Fermentproblem. Biochem. Z. 275:464 (1935).Google Scholar
  172. Williams, R. J., R. E. Eakim, E. Beerstecker jr. and W. Shive: The biochemistry of B vitamin. New York: Reinb 1950.Google Scholar
  173. Wiss, O.: Der enzymatische Abbau des Kynu-renins und 3-Oxy-kynurenins im tierischen Organismus. Z. physiol. Chem. 293:106–121 (1953).Google Scholar
  174. Warburg, O., u. W. Christian: Über die Umwandlung der 3-Hydroxy-anthranilsäure, Chinolinsäure und Nicotinsäure im tierischen Organismus. Z. physiol. Chem. 304, 221–231 (1956).Google Scholar
  175. Yanofsky, C., and D. M. Bonner: Studies on the conversion of 3-hydroxyanthranilic acid in Neurospora. J. of Biol. Chem. 190, 211–218 (1951).Google Scholar
  176. Zatman, L. J., N. O. Kaplan and S. P. Colowick: Inhibition of spleen diphosphopyridine nucleotidase by nicotinamide, an exchange reaction. J. of Biol. Chem. 200, 197–212 (1953).Google Scholar
  177. Zatman, L. J., N. O. Kaplan, S. P. Colowick and M. M. Ciotti: The isolation and properties of the isonicotinic acid hydrazide analogue of diphosphopyridine nucleotide. J. of Biol. Chem. 209, 467–484 (1955).Google Scholar
  178. Auhagen, E.: Cocarboxylase, ein neues Co-enzym der alkoholischen Gärung. Hoppe-Seylers Z. 204:149–167 (1931).Google Scholar
  179. Auhagen, E.: Über Co-carboxylase. Biochem. Z. 258:330–339 (1933).Google Scholar
  180. Bartley, W.: Metabolism of thiamine phosphates in washed suspensions of kidney particles. Biochemic. J. 56:379–387 (1954).Google Scholar
  181. Bonner, J.: Vitamin B2 a growth factor for higher plants. Science (Lancaster, Pa.) 85:183–184 (1937).Google Scholar
  182. Bonner, J., and H. Bonner: The B1 vitamins as plant hormones. Vitamins a. Hormones 6:225–275 (1948).Google Scholar
  183. Bonner, J., and E. R. Buchman: Syntheses carried out in vivo by isolated pea roots. I. Proc. Nat. Acad. Sci. U.S.A. 24, 431–438 (1938).Google Scholar
  184. Buchman, E. R. and E. M. Richardson: Thiamine analogues. I. B1 (4-methyl thiazolyl-5)-alanine. J. Amer. Chem. Soc. 61, 891–893 (1939).Google Scholar
  185. Doudney, C.O., and R.P. Wagner: A relationship of homocysteine metabolism to thiamine serine, and adenine biosynthesis in a mutant strain of Neurospora. Proc. Nat. Acad. Sci. U.S.A. 39, 1043–1052 (1953).Google Scholar
  186. Eich, S., and C. R. Cerecedo: Studies on thiamine analogues. III. Effects on enzyme systems. J. of Biol. Chem. 207, 295–303 (1954).Google Scholar
  187. Fujita, A.: Thiaminase. Adv. Enzymol. 15:389–421 (1954).Google Scholar
  188. Harington, C. R., and R. C. G. Moggridge: α-Amino-β-(4-methylthiazole-5-)-propionic acid, a possible precursor of aneurin. J. Chem. Soc. Lond. 1939, 443–446.Google Scholar
  189. Harington, C. R., and R. C. G. Moggridge: Experiments on the biogenesis of vitamin Bx. Biochemie. J. 34:685–689 (1940).Google Scholar
  190. Harris, D. L.: Biosynthesis of thiamine in Neurospora, Federat. Proc. 12:214–215 (1953).Google Scholar
  191. Harington, C. R., and R. C. G. Moggridge: Alternative pathways of thiamine biosynthesis in Neurospora. Arch. of Biochem. a. Biophysics 57:240–251 (1955).Google Scholar
  192. Horecker, B. L., and P. Z. Smyrniotis: The coenzyme function of thiamine pyrophosphate in pentose phosphate metabolism. J. Amer. Chem. Soc. 75:1009 (1953).Google Scholar
  193. Iacono, J. M., G. Wolf and B.C. Johnson: Metabolism of radioactive thiamine in the rat. Federat. Proc. 12:223 (1953).Google Scholar
  194. Johnson, B. C.: Water-soluble vitamins. Part III. Annual Rev. Biochem. 24:419–455 (1955).Google Scholar
  195. Knight, B. C. J. G.: The nutrition of Staphylococcus aureus. The activities of nicotinamide, aneurin (vitamin B2) and related compounds. Biochemic. J. 31, 967–973 (1937).Google Scholar
  196. Leuthardt, F., u. H. Nielsen: Phosphorylation biologique de la thiamine. Helvet. chim. Acta 35:1196–1209 (1952).Google Scholar
  197. Lohmann, K., u. P. Schuster: Untersuchungen über die Co-carboxylase. Biochem. Z. 294:188–214 (1937).Google Scholar
  198. McCarthy, P. T., L. R. Cerecedo and E. V. Brown: Fate of thiamine-S35 in the rat. J. of Biol. Chem. 209:611–618 (1954).Google Scholar
  199. Ochoa, O.: The Biological Action of the Vitamins. Edit, by E. A. Evans, p. 17. Chicago: The University Chicago Press 1942.Google Scholar
  200. Peters, R. A.: The biochemical lesion in vitamin B1 deficiency. Lancet 1936 I, 1161 to 1164.Google Scholar
  201. Peters, R. A., H. Rydin and R. H. S. Thompson: Brain respiration, a chain of reactions, as revealed by experiments upon catatorulin effect. Biochemie. J. 29:53–62 (1935).Google Scholar
  202. Racker, E., G. de la Haba and I. G. Leder: Thiamine pyrophosphate, a coenzyme of transketolase. J. Amer. Chem. Soc. 75:1010 (1953).Google Scholar
  203. Reed, L.J.: Metabolic functions of thiamine and lipoic acid. Physiologic. Rev. 33, 544–559 (1953).Google Scholar
  204. Robbins, W. J., and M. A. Bartley: Vitamin B1 and the growth of excised tomato roots. Science (Lancaster, Pa.) 85:246–247 (1937).Google Scholar
  205. Rossi-Fanelli, A., N. Silliprandi, P. Fasella, D. Silliprandi u. F. L. Salvetti: On phosphorylation of thiamine in the living animal. Experientia (Basel) 10:73–74 (1954).Google Scholar
  206. Schöpfer, W. H.: Plants and Vitamins. Waltham, Mass., U.S.A.: Chronica Botsanica Co. 1943.Google Scholar
  207. Schultz, A. S., L. Atkin and C.N. Frey: A fermentation test for vitamin B2. J. Amer. Chem. Soc. 59:948–949 (1937a).Google Scholar
  208. Schultz, A. S., L. Atkin and C.N. Frey: A fermentation test for vitamin Bj. J. Amer. Chem. Soc. 59:2457–2460 (1937 b).Google Scholar
  209. Schultz, A. S., L. Atkin and C.N. Frey: Thiamine, pyrimidine and thiazole as bios factors. J. Amer. Chem. Soc. 60:490 (1938).Google Scholar
  210. Tatum, E. L., and T.T. Bell: Neurospora. III. Biosynthesis of thiamine. Amer. J. Bot. 33, 15–20 (1946).Google Scholar
  211. Thoai, N. van, et L. Chevillard: Sur la synthèse enzymatique de la cocarboxylase. Purification du proteine phosphorylant la thiamine. Bull. Soc. Chim. biol. Paris 31, 204–212 (1949).Google Scholar
  212. Weil-Malherbe, H.: The enzymic phosphorylation of vitamin B1. Biochemie. J. 33:1997–2007 (1939).Google Scholar
  213. Westenbrink, H. G. K., u. J. J. Polak: Some experiments on the catatorulin effect. Rec. Trav. chim. Pays-Bas (Amsterd.) 56:315–329 (1937).Google Scholar
  214. Williams, R. J., R. E. Eakin, E. Beerstecher jr. and W. Shive: The Biochemistry of B1 Vitamins. New York (U.S.A.): Reinhold Publishing Co. 1950.Google Scholar
  215. Woolley, D.W.: An enzymatic study of the mode of action of pyrithiamine (neopyrithiamine). J. of Biol. Chem. 191, 43–54 (1951).Google Scholar
  216. Bratton, C., and E. K. Marshall: A new coupling component for sulfanilamide determination. J. of Biol. Chem. 128, 537–550 (1939).Google Scholar
  217. s, W. H., W. M. Govier, J. S. Evans, J. D. Gregory, G. D. Novelli, M. Soodak and F. Lipmann: Purification of coenzyme A from permentation sources and its further partial identification. J. Amer. Chem. Soc. 72, 4838 (1950).Google Scholar
  218. Gregory, J. D., G. D. Novelli and F. Lipmann: The composition of coenzyme A. J. Amer. Chem. Soc. 74, 854 (1952).Google Scholar
  219. Gunsalus, I. C.: Oxidative and transfer reactions of lipoic acid. Federat. Proc. 18, 715–722 (1954).Google Scholar
  220. Humphreys, T. E., E. H. Newcomb, A. H. Bokman and P. K. Stumpf: Fat metabolism in higher plants. II. Oxidation of palmitate by a planut particulate system. J. of Biol. Chem. 210, 941–948 (1954).Google Scholar
  221. Jones, M. E.: In symposium on chemistry and functions of coenzyme A. Federat. Proc. 12, 708–710 (1953).Google Scholar
  222. Jones, M. E., F. Lipmann, H. Hilz and F. Lynen: On the enzymatic mechanism of coenzyme A acetylation with adenosine triphosphate and acetate. J. Amer. Chem. Soc. 75, 3285–3286 (1953).Google Scholar
  223. Kaplan, N. O., and F. Lipmann: The assay and distribution of coenzyme A. J. of Biol. Chem. 174, 37–44 (1948).Google Scholar
  224. Kaufman, Seymour: Succinyl coenzyme A and its role in phosphorylation. Federat. Proc. 12, 704–708 (1953).Google Scholar
  225. Lipmann, F.: Acetylation of sulfanilamide by liver homogenates and extracts. J. of Biol. Chem. 160, 173–190 (1945).Google Scholar
  226. Lipmann, F., and L. C. Tuttle: A specific micromethod for the determination of acyl phosphates. J. of Biol. Chem. 159, 21–28 (1945).Google Scholar
  227. Lynen, F.: Aerobic phosphate requirements of yeast-pasteur reaction. Liebigs Ann. 546:120–141 (1941).Google Scholar
  228. Lynen, F.: Biological degradation of AcOH. I. Induction period with impoverished yeast. II. Action of malonic acid on the degradation of AcOH by yeast. Liebigs Ann. 552:270–306 (1942).Google Scholar
  229. Lynen, F.: Functional group of coenzyme a and its metabolic relations in the fatty acid cycle. Federat. Proc. 12, 683–691 (1953).Google Scholar
  230. Lynen, F., u. E. Reichert: Chemical structure of activated acetic acid. Z. angew. Chem. 63: 47, 490 (1951).Google Scholar
  231. Lynen, F., E. Reichert u. L. Rueff: Biological degradation of AcOH. VI. Isolation and chemical nature of activated AcOH. Liebigs Ann. 574 1–32 (1951).Google Scholar
  232. Mahler, H. R.: Role of coenzyme A in fatty acidmetabolism. Federat. Proc. 12:694–702 (1953).Google Scholar
  233. Novelli, G. D.: Enzymatic synthesis and structure of CoA. Federat. Proc. 12:675–681 (1953).Google Scholar
  234. Novelle, G. D., and M. B. Hoaoland: The enzymatic degradation and resynthesis of coenzyme A. 123rd Meeting, Amer. Chem. Soc, Los Angeles, March 1953, Abstr. 26C.Google Scholar
  235. Seifter, Eli: The occurrence of coenzyme a in plants. Plant Physiol. 29:403–406 (1954).PubMedGoogle Scholar
  236. Stadtman, E. R.: Coenzyme A-dependent transacetylation and transphorylation. Federat. Proc. 9:233 (1950).Google Scholar
  237. Stadtman, E. R.: In symposium on chemistry and functions of coenzyme A. Federat. Proc. 12, 692–693 (1953).Google Scholar
  238. Stadtman, E. R., G. D. Novelli and F. Lipmann: Coenzyme A-function in and acetyl transfer by the phosphotransacetylase system. J. of Biol. Chem. 191, 365–376 (1951).Google Scholar
  239. Baddiley, J., E. M. Thain and A. W. Rodwell: A possible structure for codecarboxylase. Nature (Lond.) 167, 556–557 (1951).Google Scholar
  240. Bellamy, W. D., W. W. Umbreit and I. C. Gunsalus: The function of pyridoxine; conversion of members of the vitamin B6 group into codecarboxylase. J. of Biol. Chem. 160, 461–472 (1945).Google Scholar
  241. Gunsalus, C. F., and J. Tonzetich: Transaminase for pyridoxamine and purines. Nature (Lond.) 170, 162 (1952).Google Scholar
  242. Gunsaltjs, I. C., W. D. Bellamy and W. W. Umbreit: A phosphorylated derivative of pyroxidal as the coenzyme of tyrosine decarboxylase. J. of Biol. Chem. 155:685–686 (1944).Google Scholar
  243. Gunsaltjs, I. C., W. W. Umbreit, W. D. Bellamy and C. E. Foust: Some properties of synthetic codecarboxylase. J. of Biol. Chem. 161, 743–744 (1945).Google Scholar
  244. Heyl, D., and S.A. Harris: Phosphates of the vitamin B6 group. II. 3-Pyridoxal phosphoric acid. J. Amer. Chem. Soc. 73:3434–3436 (1951).Google Scholar
  245. Heyl, D., E. Luz, S. A. Harris and K. Folkers: Phosphates of the vitamin B6 group. I. The structure of codecarboxylase. III. Pyridoxamine phosphate. J. Amer. Chem. Soc. 73: 3430–3433: 3436–3437 (1951).Google Scholar
  246. Hurwitz, J.: The enzymic phosphorylation of vitamin B6 derivatives and their effects on tyrosine decarboxylase. Biochem. et Biophysica Acta 9:496–498 (1952).Google Scholar
  247. Karrer, P., M. Viscontini and D. Forster: Pyridoxal-3-phosphate as coenzyme of L-amino decarboxylase. Helvet. chim. Acta 31:1004–1016 (1948).PubMedGoogle Scholar
  248. Meister, A., H. A. Sober and E. A. Peterson: Activation of purified glutamic-aspartic apotransaminase by crystalline pyridoxamine phosphate. J. Amer. Chem. Soc. 74:2385–2386 (1952).Google Scholar
  249. Meister, A., H. A. Sober and E. A. Peterson: Studies of the coenzyme activation of glutamic-aspartic apotransaminase. J. of Biol. Chem. 206, 89–100 (1954).Google Scholar
  250. Meister, A., and S.V. Tice: Transaminat on from glutamine to α-keto acids. J. of Biol. Chem. 187:173–187 (1951).Google Scholar
  251. Metzler, D. E., M. Ikawa and E. E. Snell: A general mechanism for vitamin B -catalyzed reactions. J. Amer. Chem. Soc. 76, 648–652 (1954).Google Scholar
  252. Peterson, E. A., and H. A. Sober: Preparation of crystalline phosphorylated derivatives of vitamin B6. J. Amer. Chem. Soc. 76, 169–175 (1954).Google Scholar
  253. Umbreit, W. W., W. D. Bellamy and I. C. Gunsalus: The function of pyridoxine derivatives: A comparison of natural and synthetic codecarboxylase. Arch. of Biochem. 7:185–199 (1945).Google Scholar
  254. Umbreit, W. W., D. J. O’Kane and I. C. Gunsalus: Function of the vitamin B6 group: Mechanisms of transamination. J. of Biol. Chem. 176, 629–637 (1948).Google Scholar
  255. Umbreit, W. W., and J. G. Waddell: Mode of action of desoxypyridoxine. Proc. Soc. Exper. Biol. a. Med. 70, 293–299 (1949).Google Scholar
  256. Wilson, A. N., and S. A. Harris: Phosphates of the vitamin B6 group. V. A synthesis of codecarboxylase. J. Amer. Chem. Soc. 73:4693–4694 (1951).Google Scholar
  257. Axelrod, B.: Citrus fruit phosphatase. J. of Biol. Chem. 167, 57–72 (1947).Google Scholar
  258. Axelrod, B.: A new mode of enzymatic phosphate transfer. J. of Biol. Chem. 172, 1–13 (1948a).Google Scholar
  259. Axelrod, B.: A study of the mechanism of “phosphotransferase” activity by the use of radioactive phosphorus. J. of Biol. Chem. 176, 295–298 (1948b).Google Scholar
  260. Axelrod, B.: The free energy of hydrolysis of p-nitrophenyl phosphate. Science (Lancaster, Pa.) 114, 525–526 (1951).Google Scholar
  261. Axelrod, B.: Enzymatic phosphate transfer. Adv. Enzymol. 17, 159–188 (1956).Google Scholar
  262. Axelrod, B., and R. S. Bandurski: Phosphoglyceryl kinase in higher plants. J. of Biol. Chem. 204, 939–948 (1953).Google Scholar
  263. Axelrod, B., R. S. Bandurski, C. M. Greiner and R. Jang: The metabolism of hexose and pentose phosphates in higher plants. J. of Biol. Chem. 202, 619–634 (1953).Google Scholar
  264. Axelrod, B., P. Saltman, R. S. Bandurski and R. S. Baker: Phosphohexokinase in higher plants. J. of Biol. Chem. 197, 89–96 (1952).Google Scholar
  265. Bandurski, R. S.: Further studies on the enzymatic synthesis of oxalacetate from phosphorylenolpyruvate and carbon dioxide. J. of Biol. Chem. 217, 137–149 (1955).Google Scholar
  266. Bandurski, R. S., and C. M. Greiner: The enzymatic synthesis of oxalacetate from phosphorylenolpyruvate and carbon dioxide. J. of Biol. Chem. 204:781–786 (1953).Google Scholar
  267. Benson, A. A.: Identification of ribulose in C14O2 photosynthesis products. J. Amer. Chem, Soc. 73:2971–2972 (1951).Google Scholar
  268. Bentley, R.: The mechanism of hydrolysis of acetyl dihydrogen phosphate. J. Amer. Chem. Soc. 71, 2765–2767 (1949).Google Scholar
  269. Berg, P., and W. K. Joklik: Transphosphorylation between nucleoside polyphosphates. Nature (Lond.) 172, 1008–1009 (1953).Google Scholar
  270. Bernheimer, A. W., and J. M. Steele Jr.: Ribonuclease and ribonuclease inhibitors among higher plants. Proc. Soc. Exper. Biol. a. Med. 89, 123–126 (1955).Google Scholar
  271. Booth, R. C.: Cereal phosphatases. 1. The assay of free wheat Phosphomonoesterase and characterization of the free phosphatases of wheat. Biochemic. J. 38: 355–362 (1944).Google Scholar
  272. Boroughs, H.: Studies on the acid phosphatase of green leaves. Arch. of Biochem. a. Biophysics 49, 30–42 (1954).Google Scholar
  273. Boyer, P.D., W. H. Harrison, H. E. Robertson and E. R. Robbins: Unpublished work cited in The Mechanism of Enzyme Action, 660–661. Baltimore: Johns Hopkins Press 1954.Google Scholar
  274. Brawerman, G., and E. Chargaff: Enzymatic phosphorylation of nucleosides by phosphate transfer. J. Amer. Chem. Soc. 75: 2020–2021 (1953a).Google Scholar
  275. Brawerman, G., and E. Chargaff: Nucleotide synthesis by malt and prostate phosphatases. J. Amer. Chem. Soc. 75, 4113 (1953b).Google Scholar
  276. Brawerman, G., and E. Chargaff: On a desoxyribonuclease from germinating barley. J. of Biol. Chem. 210, 445–454 (1954).Google Scholar
  277. Brawerman, G., and E. Chargaff: On the distribution and biological significance of the nucleoside phototransferases. Biochim. et Biophysics Acta 16, 524–532 (1955).Google Scholar
  278. Brown, D. M., L. A. Heppel and R. J. Hilmoe: Nucleotides. Part XXIV. The action of some nucleases on simple esters of mono-ribonucleotides. J. Chem. Soc. (Lond.) 1954, 40–52.Google Scholar
  279. Buchanan, J. G.: The path of carbon in photosynthesis. XIX. The identification of sucrose phosphate in sugar beet leaves. Arch. of Biochem. a. Biophysics 44, 40–52 (1953).Google Scholar
  280. Campbell, J. M., and R. S. Bandurski: Adenylate kinase in higher plants. Abstract. Annual Meeting Amer. Soc. Plant Physiologists, Ithaca, New York 1952.Google Scholar
  281. Cardini, C. E.: Activation of plant phosphoglucomutase by glucose-1,6-diphosphate. Enzymologia (Den Haag) 15, 44–48 (1951).Google Scholar
  282. Cohn, M.: Mechanisms of cleavage of glucose-1-phosphate. J. of Biol. Chem. 180, 771–781 (1949).Google Scholar
  283. Cohn, M.: A study of oxidative phosphorylation with O18-labeled inorganic phosphate. J. of Biol. Chem. 201, 735–777 (1953).Google Scholar
  284. Cohn, M.: Mechanism of conversion of inorganic phosphate to organic phosphate. (Abstr.) p. 36 C. National Meeting. Amer. Chem. Soc, Cincinnati, Ohio 1955.Google Scholar
  285. Contardi, A., and C. Ravazzoni: Enzymatic cleavage of yeast nucleic acid. Arch. ital. Biol. 92:64–75 (1934).Google Scholar
  286. Courtois, J.: Investigations on phytase. III. Attempted separation of glycerophosphatase and phytase activities of wheat bran. Biochim. et Biophysics Acta 1:270–277 (1947).Google Scholar
  287. Eggman, L., P. O. P. T’So and J. Vinograd: On the nature of myxomysin an actomysin-like protein from slime mold plasmodia. Plant Physiol. 30, xvi (1955).Google Scholar
  288. Fleury, P., and J. Courtois: Investigations on phytase. II. Comparative kinetics of the hydrolysis of glycerophosphate and inositol hexaphosphate by wheat bran. Biochim. et Biophysics Acta 1:256–269 (1947).Google Scholar
  289. Frisch-Niggemeyer, W., K. Keck, H. Kaljunen and O. Hoffmann-Ostenhof: A hitherto unknown desoxyribonuclease. Mh. Chem. 82 758–760 (1951).Google Scholar
  290. Greenstein, J. P., and W. V. Jenrette: Ribonuclease and thymonucleodepolymerase. J. Nat. Cane. Inst. 2:301–303 (1941).Google Scholar
  291. Hanes, C. S.: Breakdown and synthesis of starch by an enzyme system from pea seeds. Proc. Roy. Soc. Lond. Ser. B 128, 421–450 (1940).Google Scholar
  292. Hoffmann-Ostenhof, O.: Suggestions for a more rational classification and nomenclature of enzymes. Adv. Enzymol. 14:219–260. (1953).Google Scholar
  293. Holden, M., and N. W. Pirie: A comparison of leaf and pancreatic lipase. Biochemic. J. 60:53–62 (1955a).Google Scholar
  294. Holden, M., and N. W. Pirie: The partial purification of leaf ribonuclease. Biochemic. J. 60:39–46 (1955b).Google Scholar
  295. Jono, Y.: Nucleic acid. I. Enzymes which split nucleic acid. Acta Scholae med. Kioto 13:162–175 (1930).Google Scholar
  296. Kachmar, J. F., and P.D. Boyer: Kinetic analysis of enzyme reactions. II. The potassium activation and calcium inhibition of pyruvic phosphoferase. J. of Biol. Chem. 200:669–682 (1953).Google Scholar
  297. Kalckar, H. M.: Adenyl pyrophosphatase and myokinase. J. of Biol. Chem. 153:355–367 (1944).Google Scholar
  298. Kaufman, S.: Studies on the mechanism of the reaction catalyzed by the phosphorylating enzyme. J. of Biol. Chem. 216:153–164 (1955).Google Scholar
  299. Kornberg, A., and W. E. Pricer Jr.: On the structure of triphosphopyridine nucleotide. J. of Biol. Chem. 186:557–567 (1950a).Google Scholar
  300. Kornberg, A., and W. E. Pricer Jr.: Nucleotide pyrophosphatase. J. of Biol. Chem. 182:763–778 (1950b).Google Scholar
  301. Koshland Jr., D. E.: Stereochemistry and the mechanism of enzymic reactions. Biol. Rev. Cambridge Philos. Soc. 28: 416–436 (1953).Google Scholar
  302. Koshland Jr., D. E.: Mechanism of Enzyme Action. Baltimore: Johns Hopkins Press 1954.Google Scholar
  303. Krebs, H. A., and R. Hems: Some reactions of adenosine and inosine phosphates in animal tissue. Biochim. et Biophysica Acta 12:172–180 (1953).Google Scholar
  304. Krishnan, P.S.: Studies on apyrase. I. Purification of potato apyrase by fractional precipitation with ammonium sulfate. Arch. of Biochem. 20:261–272 (1949).Google Scholar
  305. Lardy, H. A., and J. A. Ziegler: The enzymatic synthesis of phosphopyruvate from pyruvate. J. of Biol. Chem. 159:343–351 (1945).Google Scholar
  306. Lee, K., and J. J. Eiler: Temperature-dependent characteristics of an adenylpyrophosphatase preparation from potatoes. Science (Lancaster, Pa.) 114:393–395 (1951).Google Scholar
  307. Leloir, L. F., and C. E. Cardini: The biosynthesis of sucrose phosphate. J. of Biol. Chem. 214:157–165 (1955).Google Scholar
  308. Leloir, L. F., R. E. Trucco, C. E. Cardini, A. Paladini and R. Caputto: The coenzyme of phosphoglucomutase. Arch. of Biochem. 19:339–340 (1948).Google Scholar
  309. Levintow, L., A. Meister, G. H. Hogeboom and E. L. Kuff: Studies on the relationship between the enzymatic synthesis of glutamine and the glutamyl transfer reaction. J. Amer. Chem. Soc. 77:5304–5308 (1955).Google Scholar
  310. Lipmann, F., and L. C. Tuttle: A specific micromethod for the determination of acyl phosphates. J. of Biol. Chem. 159:21–28 (1945).Google Scholar
  311. Loomis, W. D., and P. K. Stumpf: Phosphorus Metabolism, vol. 2, p. 29. Baltimore: Johns Hopkins Press 1952.Google Scholar
  312. McCready, R. M., and W. Z. Hassid: Transformation of sugars in excised barley shoots. Plant Physiol. 16:599–610 (1941).PubMedGoogle Scholar
  313. Meyerhof, O., and H. Green: Synthetic action of phosphatase. II. Transphosphorylation by alkaline phosphatase in the absence of nucleotides. J. of Biol. Chem. 183:377–390 (1950).Google Scholar
  314. Millerd, A., J. Bonner, B. Axelrod and R. S. Bandurski: Oxydative and phosphorylative activity of plant mitochondria. Proc. Nat. Sci. U.S.A. 37:855–862 (1951).Google Scholar
  315. Negelein, E.: Cit. in F. Kubowitz and P. Ott, Isolation of fermentation enzymes from human muscle. Biochem. Z. 317: 193–203 (1944).Google Scholar
  316. Pirie, N. W.: The isolation from normal tobacco leaves of nucleoprotein with some similarity to plant viruses. Biochemie. J. 47:614–625 (1950).Google Scholar
  317. Racker, E.: Synthesis of carbohydrates from carbon dioxide and hydrogen in a cell-free system. Nature (Lond.) 175:249–251 (1955).Google Scholar
  318. Ramasarma, T., J. Sri Ram and K. V. Giri: Phosphoglucomutase of green gram (Phaseolus radiatus). Arch. of Biochem. a. Biophysics 53:167–173 (1954).Google Scholar
  319. Saltman, P.: Hexokinase in higher plants. J. of Biol. Chem. 200:145–154 (1953a).Google Scholar
  320. Saltman, P.: Enzymatic phosphate transfer in plant systems. Doctoral thesis. California Institute of Technology, Pasadena, California 1953b.Google Scholar
  321. Sanadi, D. R., D. M. Gibson and P. Ayengar: Guanosine triphosphate, the primary product of phosphorylation coupled to the breakdown of succinyl coenzyme A. Biochim. et Biophysica Acta 14:434–436 (1954).Google Scholar
  322. Schlamowitz, M., and R. L. Garner: The ribonucleinase of the soybean. J. of Biol. Chem. 163, 478–497 (1946).Google Scholar
  323. Shuster, L., and N. O. Kaplan: A specific b nucleotidase. J. of Biol. Chem. 201, 535–546 (1953).Google Scholar
  324. Stein, S. S., and D. E. Koshland Jr.: Mechanism of action of alkaline phosphatase. Arch. of Biochem. a. Biophysica 39:229–230 (1952).Google Scholar
  325. Stumpf, P. K.: Carbohydrate metabolism in higher plants. J. of Biol. Chem. 182:261–272 (1950).Google Scholar
  326. Stumpf, P. K., W. D. Loomis and C. Michelson: Amide metabolism in higher plants. 1. Preparation and properties of a glutamyl transphorase from pumpkin seedling. Arch. of Biochem. 30, 126–137 (1951).Google Scholar
  327. Sutherland, E. W., J. Posternak and C. F. Cori: Mechanism of the phosphoglyceric mutase reaction. J. of Biol. Chem. 181, 153 (1949).Google Scholar
  328. Suzuki, U., Y. Yoshimura and M. Takaishi: On the occurrence of an enzyme which decomposes an-hydroxymethylenephosphoric acid. Tokyo Chem. Soc. 27:1330–1342 (1906).Google Scholar
  329. Tanko, B.: Hexosephosphates produced in higher plants. Biochemic. J. 30, 692–700 (1936).Google Scholar
  330. Uzawa, T.: The phosphomonoesterasés of bran. J. of Biochem. (Tokyo) 15:1–10 (1932).Google Scholar
  331. Weisbach, A., P. Z. Smyrniotis and B. L. Horecker: The enzymatic formation of ribulose diphosphate. J. Amer. Chem. Soc. 76:5572–5573 (1954).Google Scholar
  332. Whitfield, P. R., L. A. Heppel and R. Markham: The enzymatic hydrolysis of ribonucleoside-2:3-phosphates. Biochemic. J. 60, 15–19 (1955).Google Scholar
  333. Wilkinson, J. F.: The pathway of the adaptive fermentation of galactose by yeast. Biochemie. J. 44:460–476 (1949).Google Scholar
  334. Albaum, H. G., and M. Ogur: An adenine-pentose-pyrophosphate from plant tissues. Arch. of Biochem. 15: 158–160 (1947).Google Scholar
  335. Albaum, H. G., M. Ogur and A. Hirshfeld: The isolation of adenosine triphosphate from plant tissue. Arch. of Biochem. 27: 130–142 (1950).Google Scholar
  336. Ascoli, A.: On plasmic acid. Z. physiol. Chem. 28, 426 (1899).Google Scholar
  337. Axelrod, B., R. S. Bandurski and P. Saltman: Phosphate uptake by pea meal extracts. Federat. Proc. 10, 158 (1951).Google Scholar
  338. Ayengar, P., D. M. Gibson, C. H. Lee Pang and D. R. Sanadi: Isolation of guanosine di- and triphosphate from yeast. J. of Biol. Chem. 218, 521–533 (1956).Google Scholar
  339. Bandurski, R. S., and F. Lipmann: Studies on an oxalacetic carboxylase from liver mitochondria. J. of Biol. Chem. 219, 741–752 (1956).Google Scholar
  340. Berg, P.: Participation of adenyl-acetate in the acetate activating system. J. Amer. Chem. Soc. 77: 3163–3164 (1955).Google Scholar
  341. Berg, P., and W. K. Joklik: Enzymatic phosphorylation of nucleoside diphosphates. J. of Biol. Chem. 210, 657–672 (1954).Google Scholar
  342. Bowen, W. J., and T. D. Kerwin: A simple method for assaying ATP and ADP in mixtures. J. of Biol. Chem. 220, 9–14 (1956).Google Scholar
  343. Burma, D. P., and D. C. Mortimer: The biosynthesis of uridine diphosphate glucose and sucrose in sugar beet leaf. Arch. of Biochem. 62: 16–28 (1956).Google Scholar
  344. Cantoni, G. L.: On the role of high-energy phosphate in transmethylation. In Phosphorus metabolism, vol. 1, p. 641–646. Edit, by W. D. McElroy and B. Glass. Baltimore: — Johns Hopkins Press 1951.Google Scholar
  345. Cardini, C.E., L. F. Leloir and J. Chiriboga: The biosynthesis of sucrose. J. of Biol. Chem. 214, 149–155 (1955).Google Scholar
  346. Carter, C. E.: MetaboMsm of purines and pyrimidines. Annual. Rev. Biochem. 25, 123–146 (1956).Google Scholar
  347. Chappell, J. B., and S. V. Perry: Creatine Phosphokinase: Assay and application for the micro-determination of the adenine nucleotides. Biochemic. J. 57: 421–427 (1954).Google Scholar
  348. Chargaff, E., and J. N. Davidson (Editors): The nucleic acids, vol. 2. New York: Academic Press 1955.Google Scholar
  349. Colowick, S. P., and H. M. Kalckar: The role of myokinase in transphosphorylations. I. The enzymatic phosphorylation of hexoses by adenyl pyrophosphate. J. of Biol. Chem. 148, 117–126 (1943).Google Scholar
  350. Cori, C. F.: Regulation of enzyme activity in muscle during work. In Enzymes, Units of Biological Structure and Function, p. 573–583. Edit, by O. H. Gaebler. New York: Academic Press 1956.Google Scholar
  351. Coryell, C. D.: The proposed terms “exergonic” and “endergonic” for thermodynamics. Science (Lancaster, Pa.) 92, 380 (1940).Google Scholar
  352. Hardin, M. B.: The presence of metaphosphoric acid in cottonseed meal. S. Car. Agric. Exper. Stat. Bull. 8, N. S. 10.Google Scholar
  353. Hoffman-Ostenhof, O., J. Kenedy, K. Keck, O. Gabriel and H. W. Schönfellinger: Ein neues phosphat-übertragendes Ferment aus Hefe. Biochim. et Biophysica Acta 14: 285 (1954).Google Scholar
  354. Joklik, W. K.: The formation of nucleoside triphosphate from inosine diphosphate in yeast. Biochim. et Biophysica Acta 16, 610–611 (1955).Google Scholar
  355. Kalckar, H. M.: The role of myokinase in transphosphorylations. II. The enzymatic action of myokinase on adenine nucleotides. J. of Biol. Chem. 148: 127–137 (1943).Google Scholar
  356. Kalckar, H. M., and H. Klenow: Non-oxidative and non-proteolytic enzymes. Biosynthesis and metabolism of phosphorus compounds. Annual Rev. Biochem. 23: 527–586 (1954).Google Scholar
  357. Kiessling, W., u. O. Meyerhof: Über ein Adenindinucleotid der Hefe: Di-(Adenosin-5′-phosphorsaure). Biochem. Z. 296, 410–425 (1938).Google Scholar
  358. Krebs, H. A., and R. Hems: Some reactions of adenosine and inosine phosphates in animal tissues. Biochim. et Biophysica Acta 12, 172–180 (1953).Google Scholar
  359. Leloir, L. F., and C. E. Cardini: The biosynthesis of sucrose. J. Amer. Chem. Soc. 75: 6084 (1953).Google Scholar
  360. Leloir, L. F., and C. E. Cardini: The biosynthesis of sucrose phosphate. J. of Biol. Chem. 214, 157–165 (1955).Google Scholar
  361. Lieberman, I.: Identification of adenosine tetraphosphate from horse muscle. J. Amer. Chem. Soc. 77: 3373–3375 (1955).Google Scholar
  362. Lieberman, I.: Inorganic triphosphate synthesis by muscle adenylate kinase. J. of Biol. Chem. 219, 307–318 (1956).Google Scholar
  363. Lieberman, I., A. Kornberg and E. Simms: Enzymatic synthesis of nucleoside diphosphates and triphosphates. J. of Biol. Chem. 215, 429–440 (1955).Google Scholar
  364. Lieberman, L.: Detection of metaphosphoric acid in the nuclein of yeast. Pflügers Arch. 47: 155–160 (1890).Google Scholar
  365. Lipmann, P.: Consideration of the role of coenzyme A in some phases of fat metabolism. Fat Metabolism. Edit, by V. A. Najjar. Baltimore: Johns Hopkins Press 1954.Google Scholar
  366. Mazelis, M.: Particulate adenylic kinase in higher plants. Plant Physiol. 31: 37–43 (1956).PubMedGoogle Scholar
  367. Markham, R., and J. D. Smith: The structure of ribonucleic acid. I. Cyclic nucleotides produced by ribonuclease and by alkaline hydrolysis. Biochemie. J. 52: 552–557 (1952).Google Scholar
  368. McLaughlin, J., G. Schiffman and A. Szent-Györgyi: Inosine phosphates in muscle. Biochim. et Biophysica Acta 17: 160 (1955).Google Scholar
  369. Robbins, P. W., and F. Lipmann: Identification of enzymatically active sulfate as adenosme-3′-phosphate-5′-phosphosulfate. J. Amer. Chem. Soc. 78: 2652–2653 (1956).Google Scholar
  370. Sacks, J.: Adenosine pentaphosphate from commercial ATP. Biochim. et Biophysica Acta 16, 436 (1955).Google Scholar
  371. Sanadi, D. R., D. M. Gibson, P. Ayengar and M. Jacob: α-Ketoglutaric dehydrogenase. V. Guanosine diphosphate in coupled phosphorylation. J. of Biol. Chem. 218, 505–520 (1956).Google Scholar
  372. Schmidt, G.: The biochemistry of inorganic phyrophosphates and metaphosphates. In Phosphorus Metabolism, vol. 1. p. 443–475. Edit. by W.B. McElroy, and B. Glass. Baltimore: Johns Hopkins Press 1951.Google Scholar
  373. Schmitz, H.: Isolierung von freien Nucleotiden in verschiedenen Geweben. Vorkommen von Nucleosid-5′-phosphaten im säurelöslichen Extrakt aus Hefe. Biochem. Z. 325: 555–569 (1954).PubMedGoogle Scholar
  374. Strominger, J. L., L. A. Heppel and E. S. Maxwell: A new mechanism of nucleoside di- and triphosphate synthesis. I. Transphosphorylation between nucleoside monophosphate and nucleoside triphosphate. Arch. of Biochem. 52, 488–491 (1954).Google Scholar
  375. Stumpf, P. K.: Phosphate assimilation in higher plants. In Phosphorus Metabolism, vol. II, p. 29–67. Edit, by W. D. McElroy and B. Glass. Baltimore: Johns Hopkins Press 1952.Google Scholar
  376. Utter, M. F., K. Kurahashi and I. A. Rose: Some properties of oxalacetic carboxylase. J. of Biol. Chem. 207, 803–819 (1954).Google Scholar
  377. Webster, G. C.: Nitrogen Metabolism. Annual Rev. Plant Physiol. 6: 43–70 (1955).Google Scholar
  378. Wintermans, J. F. G. M.: Polyphosphate formation in Chlorella in relation to photosynthesis. Meded. Landbouwhoogeschool te Wageningen 55: 69–126 (1955).Google Scholar
  379. Wyatt, G. R.: Separation of nucleic acid components by chromatography on filter paper. In: The Nucleic Acids, vol. I, p. 243–266. Edit. by E. Chargaff and J. N. Davidson. New York: Academic Press 1955.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1958

Authors and Affiliations

  • P. Schwarze
  • J. M. Wiame
  • J. A. Lovern
  • W. W. Umbreit
  • H. G. Albaum
  • K. Hasse
  • B. J. D. Meeuse
  • J. R. P. O’Brien
  • Bernard Axelrod
  • Robert S. Bandurski
  • Te May Ching

There are no affiliations available

Personalised recommendations