Advertisement

Der Stoffwechsel der S-haltigen Verbindungen

Chapter
  • 34 Downloads
Part of the Encyclopedia of Plant Physiology / Handbuch der Pflanzenphysiologie book series (532, volume 9)

Zusammenfassung

Seit Liebig weiß man, daß die Pflanze neben einer Reihe anderer Stoffe dem Boden Schwefel entnimmt, und Sachs und Liebig konnten experimentell einwandfrei nachweisen, daß dieses Element unentbehrlich ist. Es gehört zu jener Gruppe von Mineralstoffen, die, wie Stickstoff, Phosphor, Kalium, Calcium, Magnesium und Eisen, im Gegensatz zu den „Spurenelementen“ in relativ großer Menge für die normale Entwicklung gebraucht werden. Über seine Funktion im Stoffwechsel, auf welche die Unentbehrlichkeit hinweist, war zu Pfeffers Zeiten noch nichts bekannt. „Der Schwefel gehört zur Constitution der meisten Proteinstoffe, die durchschnittlich nur 0,2–2,4 Proc., also weniger als P enthalten. Zwar kommt außerdem der Schwefel im Senföl und gewissen anderen Verbindungen vor, indes läßt sich aus diesen Erfahrungen nicht entnehmen, ob er noch anderweitige generelle Bedeutung im Stoffwechsel hat“ (Pflanzenphysiologie 1897, S. 423). „Da in den höheren Pflanzen der Schwefel meist in Form des Sulfations zur Aufnahme gelangt und in den Proteinstoffen nur SH-Gruppen vorkommen, so muß allgemein auch hier eine Sulfatreduktion stattfinden. Über diese Prozesse, die sich natürlich auch in den nicht chlorophyll-haltigen Pflanzen abspielen müssen, ist noch nicht das mindeste bekannt.“ Mit diesen Worten äußert sich Czapek 1925 (Biochemie der Pflanzen, Band III, S. 171) über den wichtigsten Teil des Schwefelstoffwechsels der höheren Pflanze.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aronoff, S.: Photosynthesis. Bot. Rev. 23, 65–107 (1957).CrossRefGoogle Scholar
  2. Barmen, B. S., and J. G. Wood: Studies on sulfur metabolism of plants. II. New Phyto-logist 38, 257–264 (1939).CrossRefGoogle Scholar
  3. Barron, E. S. G.: Thiol groups of biological importance. Adv. Enzymol. 11, 201–266 (1955).Google Scholar
  4. Bavendamm, W.: Die Physiologie der schwefelspeichernden und schwefelfreien Purpurbakterien. In Ergebnisse der Biologie, Bd. XIII, S. 1–53. Berlin: Springer 1936.CrossRefGoogle Scholar
  5. Beijerinck, N.M.: Über Spirillum desulfuricans als Ursache von Sulfatreduktion. Zbl. Bakter. II 1, 1, 49, 104 (1895).Google Scholar
  6. Über die Bakterien, welche sich im Dunkeln mit Kohlensäure als Kohlenstoff quelle ernähren können. Zbl. Bakter. II 2, 539 (1904).Google Scholar
  7. Bersin, Th.: Amidasen und Proteasen. In Nord-Weidenhagen, Handbuch der Enzymologie, S. 574–632. Leipzig: Akademische Verlagsgesellschaft 1940.Google Scholar
  8. Boutron et Robiquet: Sur la semence de moutarde. J. Pharmacie (II) 17, 279–308 (1831). Zit. nach Gildemeister-Hoffmann, Die ätherischen Öle. II. Leipzig: Schimmel 1929.Google Scholar
  9. Bussy, A.: Untersuchungen über die Bildung des ätherischen Senföles. Liebigs Ann. 34, 223–230 (1840).CrossRefGoogle Scholar
  10. Butlin, K. R., and M.E. Adams: Autotrophic growth of sulphate reducing bacteria. Nature (Lond.) 160, 154 (1947).CrossRefGoogle Scholar
  11. Butlin, K. R., M. E. Adams and M. Thomas: The isolation and cultivation of sulphate reducing bacteria. J. Gen. Microbiol. 3, 46 (1949).PubMedCrossRefGoogle Scholar
  12. Calvin, M.: Chemical and photochemical reactions of thioctic acid and related disulfides. I. Federat. Proc. 13, 697–711 (1954).Google Scholar
  13. Der Photosynthese-Cyclus. Angew. Chem. 68, 253–264 (1956).Google Scholar
  14. Calvin, M., and J. A. Barltrop: A possible primary quantum conversion act of photosynthesis. J. Amer. Chem. Soc. 74, 6153 (1952).CrossRefGoogle Scholar
  15. Cantoni, G. L.: S-Adenosyl-methionine, a new intermediate formed enzymatically from L-methionine and adenosintriphosphate. J. of Biol. Chem. 204, 403–416 (1953).Google Scholar
  16. Cavallito, C. J., J. S. Buck and C.M. Suter: Allicin, the antibacterial principle of Allium sativum. II. Determination of the chemical structure. J. Amer. Chem. Soc. 66, 1952–1954 (1944).CrossRefGoogle Scholar
  17. Challenger, F.: Biological methylation. Adv. Enzymol. 12, 429–491 (1951).Google Scholar
  18. Challenger, F., and M. J. Simpson: Studies on biological methylation. Part XII. A precursor of the dimethyl sulfide evolved by Polysiphonia fastigiata. Dimethyl-2-carboxyethylsulphonium hydroxide and its salts. J. Chem. Soc. Lond. 1948, 1591–1597.Google Scholar
  19. Czapek, Fr.: Biochemie der Pflanzen, Bd. III. Jena: Gustav Fischer 1925.Google Scholar
  20. Dewar, E. T., and E. G. V. Percival: Polysaccharides of carrageen. II. J. Chem. Soc. Lond. 1947, 1622.Google Scholar
  21. Fries, N.: X-ray induced mutations in the physiology of Ophiostoma. Nature (Lond.) 155, 757 (1945).CrossRefGoogle Scholar
  22. Gadamer, J.: Das ätherische Öl von Tropaeolum majus. Arch. Pharmaz. 237, 111–120 (1899).CrossRefGoogle Scholar
  23. Über ätherische Kressenöle und die ihnen zu Grunde liegenden Glukoside. Arch. Pharmaz. 237, 507–521 (1899).Google Scholar
  24. Gregory, J. D., G. D. Novelli and F. Lipmann: The composition of coenzyme A. J. Amer. Chem. Soc. 74, 854 (1952).Google Scholar
  25. Grisebach, H.: Chemie und Biochemie der α-Liponsäure. Angew. Chem. 68, 554–559 (1956).CrossRefGoogle Scholar
  26. Gunsalus, J. C.: The mechanism of enzyme action. Bull. Johns Hopkins Press 1954. Zit. nach Grisebach.Google Scholar
  27. Haagen-Smit, A. J., J. G. Kirchner, C. L. Deasy and A. N. Prater: Chemical studies of pineapple (Ananas sativus L.). II. Isolation and identification of a sulfur-containing ester in pineapple. J. Amer. Chem. Soc. 67, 1651–1652 (1945).CrossRefGoogle Scholar
  28. Happold, F. C., and A. Key: The bacterial purification of gas-works liquors. Biochemic. J. 31, 1323 (1937).Google Scholar
  29. Harrison, B. F., M.D. Thomas and G. R. Hill: Radioautographs showing the distribution of radio-sulfur in wheat. Plant Physiol. 19, 245–257 (1944).PubMedCrossRefGoogle Scholar
  30. Heiserich, E.: Schwefelstoffwechsel in Mais und Tabak. Z. Pflanzenernährg 37, 55–72 (1935).CrossRefGoogle Scholar
  31. Hesse, G., F. Reicheneder u. H. Eysenbach: Die Herzgifte im Calotropis-Milchsaft. 2. Mitt. Liebigs Ann. 537, 67–68 (1938).CrossRefGoogle Scholar
  32. Hockenhull, D. J. D.: Studies in the metabolism of mould fungi. I. A preliminary study of the metabolism of carbon, nitrogen, and sulphur by Aspergillus nudilans. J. of Exper. Bot. 1, 194–200 (1950).CrossRefGoogle Scholar
  33. Horecker, B. L., and P. Z. Smyrniotis: The coenzyme function of thiamine pyrophosphate in pentose phosphate metabolism. J. Amer. Chem. Soc. 75, 1009 (1953).CrossRefGoogle Scholar
  34. Horecker, B. L., P. Z. Smyrniotis and H. Klenow: The formation of sedoheptulose from pentose phosphate. J. of Biol. Chem. 205, 661–682 (1953).Google Scholar
  35. Horowitz, N. H.: Biochemical genetics of Neurospora. Adv. Genet. 3, 33–71 (1950).PubMedCrossRefGoogle Scholar
  36. Johnson, J. R., W. P. Bruce and J. D. Dutcher: J. Amer. Chem. Soc. 65, 2005 (1943). Zit. nach A. Stoll und E. Jucker in Paech-Tracey, Moderne Methoden der Pflanzen -analyse, Bd. IV. Berlin-Göttingen-Heidelberg: Springer 1955.CrossRefGoogle Scholar
  37. Jones, W. G. M., and S. Peat: Constitution of agar. J. Chem. Soc. Lond. 1942, 225.Google Scholar
  38. Kjaer, A., and R. Gmelin: iso-Thiocyanates. XI. 4-Methylthiobutyl isothiocyanate, a new naturally occurring mustard oil. Acta chem. scand. (Copenh.) 9, 542–544 (1955).CrossRefGoogle Scholar
  39. Kjaer, A., R. Gmelin and I. Larsen: (a) iso-Thiocyanates. XIII. Methyl isothiocyanate, a new naturally occurring mustard oil, present as glucoside (glucocapparin) in Capparidaceae. Acta chem. scand. (Copenh.) 9, 857–858 (1955).CrossRefGoogle Scholar
  40. Kjaer, A., R. Gmelin and I. Larsen: (b) iso-Thiocyanates. XII. 3-Methyl-thiopropyl isothiocyanate (Ibervirin), a new naturally occurring mustard oil. Acta chem. scand. (Copenh.) 9, 1143–1147 (1955).CrossRefGoogle Scholar
  41. Kjaer, A., and I. Larsen: iso-Thiocyanates. IX. The occurrence of ethyl isothiocyanate in nature. Acta chem. scand. (Copenh.) 8, 699–701 (1954).CrossRefGoogle Scholar
  42. Kjaer, A., I. Larsen and R. Gmelin: iso-Thiocaynates. XIV. 5-Methylthio-pentyl isothiocyanate, a new mustard oil present in nature as a glucoside (glucoberteroin). Acta chem. scand. (Copenh.) 9, 1311–1316 (1955).CrossRefGoogle Scholar
  43. Koolhaas, D. R.: Das Vorkommen von Methylmercaptan in den Blättern der Lasianthus-Arten. Biochem. Z. 230, 446–450 (1931).Google Scholar
  44. Kostytschew, S.: Lehrbuch der Pflanzenphysiologie. In Chemische Physiologie, Bd. I. Berlin: Springer 1926.Google Scholar
  45. Lampen, I. O., R. R. Roepke and M. J. Jones: Studies on the sulfur metabolism of Escherichia coli. III. Mutant strains of Escherichia coli unable to utilize sulfate for their complete sulfur requirements. Arch. of Biochem. 13, 55–66 (1947).Google Scholar
  46. Larsen, H.: On the culture and general physiology of the green sulfur bacteria. J. Bacter. 64, 187 (1952).Google Scholar
  47. On the microbiology and biochemistry of the photosynthetic green sulfur bacteria. Kgl. norske Vidensk. Selsk., Skr. 1953, Nr. 1.Google Scholar
  48. Lichstein, H. S.: Functions of biotin in enzyme systems. Vitamins a. Hormones 9, 27–74 (1951).Google Scholar
  49. Lieske, R.: Untersuchungen über die Physiologie denitrifizierender Schwefelbacterien. Ber. dtsch. bot. Ges. 36, 12 (1912).Google Scholar
  50. Lipmann, F.: Acetylation of sulfamide by liver homogenates and extracts. J. of Biol. Chem, 160, 173–190 (1945).Google Scholar
  51. Lohmann, K.: Beitrag zur enzymatischen Umwandlung von synthetischem Methylglyoxal in Milchsäure. Biochem. Z. 254, 332–341 (1932).Google Scholar
  52. Miller, L. P.: DL-Methionine as a source of sulfur by growing plants. Contrib. Boyce Thompson Inst. 14, 443–456 (1947).Google Scholar
  53. Rapid formation of high concentrations of hydrogen sulfide by sulfate-reducing bacteria. Contrib. Boyce-Thompson Inst. 15, 437–465 (1949).Google Scholar
  54. Tolerance of sulfate-reducing bacteria to hydrogen sulfide. Contrib. Boyce Thompson Inst. 16, 78–83 (1950).Google Scholar
  55. Morris, C. J., and J. F. Thompson: Isolation of L(+)-S-methylcysteine sulphoxide from turnip roots (Brassica rapa). Chem. a. Ind. 1955, 951.Google Scholar
  56. Mothes, K.: Über den Schwefelstoffwechsel der Pflanzen. II. Planta (Berl.) 29, 67–109 (1939).CrossRefGoogle Scholar
  57. Mothes, K., u. W. Specht: Über den Schwefelstoffwechsel der Pflanzen. Planta (Berl.) 22, 800–803 (1934).CrossRefGoogle Scholar
  58. Nakamura, N.: Über das Vorkommen von Methylmercaptan in frischer Raphanuswurzel. Biochem. Z. 164, 31–33 (1925).Google Scholar
  59. Neubkrg, C., u. J. Wagner: Über die Verschiedenheit der Sulfatase und Myrosinase. VIII. Mitt. Über Sulfatase. Biochem. Z. 174, 457–463 (1926).Google Scholar
  60. Niel, C. B. van: On the moiphology and physiology of the purple and green sulfur bacteria. Arch. of Microbiol. 3, 1–112 (1931).Google Scholar
  61. Nightingale, G. T., L. G. Scher-Merhorn and W. R. Robbins: Effects of sulfur deficiency on metabolism in tomato. Plant Physiol. 7, 565–595 (1932).PubMedCrossRefGoogle Scholar
  62. Pfeffer, W.: Pflanzenphysiologie, Bd. I. Leipzig: Engelmann 1897.Google Scholar
  63. Reed, L. J., and B. G. de Busk: Lipothiamide pyrophosphate: Coenzym for oxidative decarboxylation of α-ketoacids. J. Amer. Chem. Soc. 74, 3964–3965 (1952).CrossRefGoogle Scholar
  64. Reed, L. J., B. G. de Busk, J. C. Gunsalus and C.S. Hornberger: Cristalline α-lipoic acid: A catalytic agent associated with pyruvate dehydrogenase. Science (Lancaster, Pa.) 114, 93–94 (1951).PubMedCrossRefGoogle Scholar
  65. Schmid, H., u. P. Karrer: Über Inhaltsstoffe des Rettichs. I. Über Sulphoraphen, ein Senföl aus Rettichsamen (Baphanus sativus L. var. alba). Helvet. chim. Acta 31, 1017 bis 1028 (1948).PubMedCrossRefGoogle Scholar
  66. Schneider, W.: Über Cheirolin, das Senföl des Goldlacksamens. Sein Abbau und Aufbau. Liebigs Ann. 375, 207–254 (1910).CrossRefGoogle Scholar
  67. Schneider, W., u. H. Kaufmann: Untersuchungen über Senföle. II. Erysolin, ein Sulfonsenföl aus Erysimum Perowskia-num. Liebigs Ann. 392, 1–15 (1912).CrossRefGoogle Scholar
  68. Schultz, O.-E., u. R. Gmelin: Das Senfölglukosid „Glukoiberin“ und der Bitterstoff „Ibamarin“ von Iberis amara L. (Schleifenblume). Arch. Pharmaz. 287, 404–411 (1954).CrossRefGoogle Scholar
  69. Seifter, E.: The occurrence of coenzyme A in plants. Plant Physiol. 29, 403–406 (1954).PubMedCrossRefGoogle Scholar
  70. Semmler, F. W.: Über schwefelhaltige ätherische Öle. Asa foetida Öl. Arch. Pharmaz. 229, 1–31 (1891).CrossRefGoogle Scholar
  71. Starkey, E. L.: Isolation of some bacteria which oxidize thiosulphate. Soil Sci. 39, 197 (1935).CrossRefGoogle Scholar
  72. A study of spore formation and other morphological characteristics of Vibrio desulfuricans. Arch. of Microbiol. 9, 268–304 (1938).Google Scholar
  73. Stoll, A., u. E. Seebeck: Über Alliin, die genuine Muttersubstanz des Knoblauchöles. Helvet. chim. Acta 31, 189–210 (1948).PubMedCrossRefGoogle Scholar
  74. Über den enzyma-tischen Abbau des Alliins und die Eigenschaften der Alliinase. Helvet. chim. Acta 32, 197–205 (1949).Google Scholar
  75. Synge, R.L.M., and J. C. Wood: A new free amino acid in cabbage. Biochemic. J. 60, XV–XVI (1955).Google Scholar
  76. Thomas, M. D.: Agricultural research with radioactive sulfur and arsenic. Proc. Auburn Conference on Use of Radioactive Isotopes in Agricultural Research. Auburn, Ala. 1948.Google Scholar
  77. Thomas, M. D., R. H. Hendricks and G. R. Hill: Some chemical reactions of sulfur dioxide after absorption by alfalfa and sugar beets. Plant Physiol. 19, 212–226 (1944).PubMedCrossRefGoogle Scholar
  78. Turrell, F. M.: Physiological effects of elemental sulfur dust on citrus fruits. Plant Physiol. 25, 13–62 (1950).PubMedCrossRefGoogle Scholar
  79. Turrell, F. M., and M. Chervenak: Metabolism of radioactive elemental sulfur applied to lemons as an insecticide. Bot. Gaz. 111, 109–122 (1949).CrossRefGoogle Scholar
  80. Turrell, F. M., and J. R. Weber: Elemental sulfur dust, a nutrient for lemon leaves. Science (Lancaster, Pa.) 122, 119–120 (1955).CrossRefGoogle Scholar
  81. Waksman, S.A., and J. S. Joffe: Microorganisms concerned in the oxidation of the soil. II. Thiobacillus thiooxydans, a new sulphur-oxidizing organism isolated from the soil. J. Bacter. 7, 239–256 (1922).Google Scholar
  82. Weygand, F., O. Trauth u. R. Löwenfeld: Konstitutionsaufklärung des Thiozuckers der Adenylthiomethylpentose. Chem. Ber. 83, 563–567 (1950).CrossRefGoogle Scholar
  83. Winogradsky, S.: Beiträge zur Morphologie und Physiologie der Schwefelbakterien. Leipzig: Felix 1888.Google Scholar
  84. Woolley, D. W., and W. H. Peterson: J. of Biol. Chem. 122, 213 (1937). Zit. nach A. Stoll und E. Jucker in Paech-Tracey, Moderne Methoden der Pflanzenanalyse, Bd. IV. Berlin-Göttingen-Heidelberg: Springer 1955.Google Scholar
  85. Youatt, J. B.: Studies on the metabolism of Thiobacillus thiocyano-oxidans. J. Gen. Microbiol. 11, 139–149 (1954).PubMedCrossRefGoogle Scholar
  86. Zechmeister, L., and J. W. Sease: Blue fluorescing compound, terthienyl, isolated from marigolds. J. Amer. Chem. Soc. 69, 273 (1947).CrossRefGoogle Scholar
  87. Alexander, G. J., A.M. Gold and E. Schwenk: The methyl group of methionine as a source of C28 in ergosterol. J. Amer. Chem. Soc. 79, 2967 (1957).CrossRefGoogle Scholar
  88. Allen, M. B., and C. B. van Niel: Experiments on bacterial denitrification. J. Bacter. 64, 397–412 (1952).Google Scholar
  89. Bachhawat, B. K., and M. J. Coon: The role of adenosine triphosphate in the enzymatic activation of carbon dioxide. J. Amer. Chem. Soc. 79, 1505–1506 (1957).CrossRefGoogle Scholar
  90. Baddiley, J., and G. A. Jamieson: Synthesis of “active methionine”. Chem. a. Ind. 1954, 375.Google Scholar
  91. Barron, E. S. G.: Thiol groups of biological importance. Adv. Enzymol. 11, 201–266 (1950).Google Scholar
  92. Beinert, H., R. M. Bock, D. S. Goldman, D. E. Green, H. R. Mahler, S. Mii, P. G. Stansly and S. J. Waiol: The reconstruction of the fatty acid oxidizing system of animal tissues. J. Amer. Chem. Soc. 75, 4111–4112 (1953).CrossRefGoogle Scholar
  93. Benesch, R. E., H. A. Lardy and R. Benesch: The sulfhydryl groups of crystalline proteins. I. Some albumins, enzymes, and hemoglobins. J. of Biol. Chem. 216, 663–676 (1955).Google Scholar
  94. Bersin, Th.: Über die Einwirkung von Oxydations- und Reduktionsmitteln auf Papain. II. Z. physiol. Chem. 222, 177–186 (1933).CrossRefGoogle Scholar
  95. Über die Thiolnatur des Papains. Biochem. Z. 278, 340–341 (1935).Google Scholar
  96. Amidasen und Proteasen. In Nord-Weidenhagen, Handbuch der Enzymologie, S. 574–632. Leipzig 1940. Übersichtsreferat.Google Scholar
  97. Reduktion nach Meerwein-Ponndorf und Oxydation nach Oppenhauer. Angew. Chem. 53, 266–271 1940).Google Scholar
  98. Newer Methods of Preparative Organic Chemistry. Interscience, New York 1948. Übersichtsreferat. — Die Phytochemie des Schwefels. Adv. Enzymol. 10, 223–323 (1950).Google Scholar
  99. Übersichtsreferat. — Kurzes Lehrbuch der Enzymologie, 4. Aufl., S. 284. Leipzig: Akademische Verlagsgesellschaft 1954.Google Scholar
  100. Exchange adsorption in man. In C. Calmon and T. R. E. Kressman, Ion Exchangers in Organic and Biochemistry. New York 1957. Übersichtsreferat.Google Scholar
  101. Bersin, Th., u. H. Köster: (1) Über die Einwirkung von Oxydations- und Reduktionsmitteln auf Papain. III. Z. physiol. Chem. 233, 59–66 (1935).CrossRefGoogle Scholar
  102. Bersin, Th., u. H. Köster: (2) Die Einwirkung von Aktivatoren, Hemmungskörpern und Destruktoren auf Urease. Z. Naturwiss. 1935, 230–242.Google Scholar
  103. Bersin, Th., u. W. Logemann: (1) Über die Einwirkung von Oxydations- und Reduktionsmitteln auf Papain. I. Z. physiol. Chem. 220, 209–216 (1933).CrossRefGoogle Scholar
  104. Bersin, Th., u. W. Logemann: (2) Selen- und Tellurmercaptide. Liebigs Ann. 505, 3–17 (1933).Google Scholar
  105. Bersin, Th., A. Müller u. E. Strehler: Methylmethioninsulfoniumsalze. Arzneimittel-Forsch. 6, 174–176 (1956).Google Scholar
  106. Bersin, Th., u. J. Steudel: Polarimetrische Untersuchungen über das Thiol-Disulfid-System. Ber. dtsch. chem. Ges. 71, 1015–1024 (1938).CrossRefGoogle Scholar
  107. Binkley, F.: Catalytic cleavage of thioethers. J. Amer. Chem. Soc. 77, 501 (1955).CrossRefGoogle Scholar
  108. Bradfield, J. R. G.: Plant carbonic anhydrase. Nature (Lond.) 159, 467–468 (1947).CrossRefGoogle Scholar
  109. Calvin, M.: Der Photosynthese-Cyclus. Angew. Chem. 68, 253–264 (1956).CrossRefGoogle Scholar
  110. Challenger, F.: The biological importance of organic compounds of sulphur. Endeavour 12, 1–9 (1953).Google Scholar
  111. Biological methylation. Quart. Rev. Chem. Soc. Lond. 9, 255–286 (1955).Google Scholar
  112. Chiba, H., F. Kawai and K. Kondo: Plant carbonic anhydrase. V. Properties as thiol enzyme. Bull. Res. Inst. Food Sci., Kyoto Univ. Nr 13, S. 12–22, 1954; durch C. A. 48, 9421–9422(1954).Google Scholar
  113. Conn, E. E., and B. Vennesland: Glutathione reductase of wheat germs. J. of Biol. Chem. 192, 17–28 (1951).Google Scholar
  114. Conrad, J. P.: Hydrolysis of urea in the soil by thermolabile catalysis. Soil Sci. 49, 253–255 (1940).CrossRefGoogle Scholar
  115. Nature of the catalyst effecting the hydrolysis of urea in soils. Soil Sci. 50, 119–122 (1940).Google Scholar
  116. Conté, M.: The plasticization of rubber in the form of latex. Rev. gén. caoutchouc 30, 262–264 (1953); durch C. A. 47, 6167 (1953).Google Scholar
  117. Cretin, C. J.: Oxidation-reduction system of Hevea brasiliensis latex. Rubber Res. Inst. Malaya 13. Comm. 276, 184–191 (1951); durch C.A. 46, 9333 (1952).Google Scholar
  118. Dakin: Zit. bei Nafziger.Google Scholar
  119. Day, R., and J. Franklin: Plant carbonic anhydrase. Science (Lancaster, Pa.) 104, 363–365 (1946).CrossRefGoogle Scholar
  120. Eldjarn, L., and A. Pihl: On the mode of action of X-ray protective agents. II. Interaction between biologically important thiols and disulfids. J. of Biol. Chem. 225, 499–510 (1957).Google Scholar
  121. Elliott, S. D.: The crystallization and serological differentiation of a streptococcal proteinase and its precursor. J. of Exper. Med. 92, 201–218 (1950).CrossRefGoogle Scholar
  122. Evans, H. J., and A. Nason: Pyridine nucleotide-nitrate reductase from extracts of higher plants. Plant Physiol. 28, 233–254 (1953).PubMedCrossRefGoogle Scholar
  123. Feigl, F., u. V. Gentil: A new spot test for urease. Biol. Jaarbook Konink. Natuurw. Genoot. Dodonaea Gent 20, 47–49 (1953); durch C. A. 48, 8305 (1954).Google Scholar
  124. Finkle, B. J., and E. L. Smith: Sulfhydryl groups of crystalline papain. Federat. Proc. 16, 180 (1957).Google Scholar
  125. Franzen, V.: Wirkungsmechanismus der Glyoxalase. I. Chem. Ber. 89, 1020–1023 (1956).CrossRefGoogle Scholar
  126. Frensdorff, H. K., M.T. Watson and W. Kauzmann: The kinetics of protein denatu-ration. IV. J. Amer. Chem. Soc. 75, 5157–5166 (1953).CrossRefGoogle Scholar
  127. The kinetics of protein denatu-ration. V. J. Amer. Chem. Soc. 75, 5167–5172 (1953).Google Scholar
  128. Fruton, J. S.: The rôle of proteolytic enzymes in the biosynthesis of peptide bonds. Yale J. Biol. Med. 22, 263–271 (1950).PubMedGoogle Scholar
  129. Fujita, A.: Thiaminase. Adv. Enzymol. 15, 389–421 (1954).Google Scholar
  130. Heimberg, M., J. Fridovich and Ph. Handler: The enzymatic oxidation of sulfite. J. of Biol. Chem. 204, 913–926 (1953).Google Scholar
  131. Hinkel, E. T., and C. Zippin: Correlation of the results obtained by beef-digestion, gelatine-digestion, and milk-clotting methods of measuring the proteolytic activity of papain. Ann. New York Acad. Sci. 54, 228–235 (1951).CrossRefGoogle Scholar
  132. Hoffmann-Ostenhof, O.: Enzymologie, S. 328. Wien: Springer 1954.Google Scholar
  133. Hwang, K., and A. C. Ivy: A review of the literature on the potential therapeutic significance of papain. Ann. New York Acad. Sci. 54, 161–207 (1951).CrossRefGoogle Scholar
  134. Jaffé, W. G.: The activation of papain and related plant enzymes with sodium thio-sulfate. Arch. of Biochem. 8, 385–393 (1945).Google Scholar
  135. Jones, M. E., W. R. Hearn, M. Fried and J. S. Fruton: Transamidation reactions catalyzed by cathepsin. C. J. of Biol. Chem. 195, 645–665 (1952).Google Scholar
  136. Joyeux, Y., et M. Croson: Lactic dehydrogenase from a strain of Bacterium anitralum. C. r. Acad. Sci. Paris 239, 1439–1440 (1954); durch C.A. 49, 4786 (1955).Google Scholar
  137. Kimmel, J. R., and E. L. Smith: Crystalline papain. J. of Biol. Chem. 207, 515–574 (1954).Google Scholar
  138. Klotz, I. M., J. M. Urquhardt, T. A. Klotz and J. Ayers: Slow intramolecular changes in copper complexes of serum albumin. J. Amer. Chem. Soc. 77, 1919–1925 (1955).CrossRefGoogle Scholar
  139. Knox, R., and M. R. Pollock: Bacterial tetrathionase: Adaptation without demonstrable cell growth. Biochemic. J. 38, 299–304 (1944).Google Scholar
  140. Krimsky, I., and E. Racker: Glutathione, a prosthetic group of glyceraldehyde-3-phosphate dehydrogenase. J. of Biol. Chem. 198, 721–729(1952).Google Scholar
  141. Laidler, K.J., and J. P. Hoare: The molecular kinetics of the urea-urease system. II. Heats and entropies of complex formation and reaction. J. Amer. Chem. Soc. 72, 2489 bis 2494 (1950).CrossRefGoogle Scholar
  142. Lang, K.: Das Enzym Rhodanese. Z. Vitamin-, Hormon- u. Fermentforsch. 2, 288–291 (1949).Google Scholar
  143. Lampson, G. P., and H. L. Klug: Preparation of selenium derivatives of sulfhydryl compounds. Proc. South Dakota Acad. Sci. 27, 47–49 (1948).Google Scholar
  144. Larson, A. D., and R. E. Kallio: Purification and properties of bacterial urease. J. Bacter. 08, 67–73 (1954).Google Scholar
  145. Lepetit, F.: Natural, thermal, and biochemical degradation of ammo-niated Hevea latex to give heat sensitivity. Trans. Inst. Rubber Ind. 23, 104–117 (1947); durch C.A. 42, 2796–2797 (1948).Google Scholar
  146. Lichstein, H. C.: Functions of biotin in enzyme systems. Vitamins a. Hormones 9, 27–74 (1951).CrossRefGoogle Scholar
  147. Lindley, H.: The mechanism of action of hydrolytic enzymes. Adv. Enzymol. 15, 271–299 (1954).Google Scholar
  148. Lipmann, F.: Development of the acetylation problem, a personal account. Science (Lancaster, Pa.) 120, 855–865 (1954).PubMedCrossRefGoogle Scholar
  149. Logemann, W.: Untersuchungen über die Autoxydation von Mercaptanen. Zugleich ein Beitrag zur chemischen Natur des Papains. Inaug.-Diss. Marburg a. d. Lahn 1935.Google Scholar
  150. Lohmann, K.: Beitrag zur enzymatischen Umwandlung von synthetischem Methyl -glyoxal in Milchsäure. Biochem. Z. 254, 332–341 (1932).Google Scholar
  151. Lucas, E. H., and R. U. Byerrum: Plant carbonic anhydrase. I. Occurence, distribution and properties. Papers Mich. Acad. Sci. 37, 55–61 (1951); durch C. A. 47, 9433 (1953).Google Scholar
  152. Lynen, F.: Quantitative Bestimmung von Acyl-mercaptanen mittels der Nitroprussid-Reaktion. Liebigs Ann. 574, 33–37 (1951).CrossRefGoogle Scholar
  153. Der Fettsäurecyclus. Angew. Chem. 67, 463–470 (1955).Google Scholar
  154. Lynen, F., u. K. Decker: Das Coenzym A und seine biologischen Funktionen. Erg. Physiol., biol. Chem. exper. Pharmakol. 49, 327–424 (1957).CrossRefGoogle Scholar
  155. Mapson, L. W.: Estimation of oxidized glutathione. Biochemic. J. 55, 714–717 (1953).Google Scholar
  156. Mapson, L. W., and D. R. Goddard: Reduction of glutathione by plant tissues. Biochemic. J. 49, 592–601 (1951).Google Scholar
  157. Maschmann, E.: Über Bakterienproteasen. I. Biochem. Z. 294, 1–33 (1937). II. Biochem. Z. 295, 1–10 (1937).Google Scholar
  158. Mattenheimer, H., u. HS. Nitschmann: Das Lab und seine Wirkung auf das Casein der Milch. VIII. Die Abspaltung von Nicht-Protein-Stickstoff (NPN) aus Casein durch verschiedene proteolytische Fermente, verglichen mit der Abspaltung durch Lab. Helvet. chim. Acta 38, 687–698 (1955).CrossRefGoogle Scholar
  159. McDonald, C., and A. K. Balls: Esterase action of papain. Federat. Proc. 13, 262 (1954).Google Scholar
  160. Meldrum, N. U., and H. L. S. Tarr: Reduction of glutathione by the Warburg-Christian system. Biochemic. J. 29, 108–112 (1935).Google Scholar
  161. Metzler, D. E., M. Ikawa and E. E. Snell: A general mechanism for vitamin B6-catalyzed reactions. J. Amer. Chem. Soc. 76, 648–652 (1954).CrossRefGoogle Scholar
  162. Millerd, A., and J. Bonner: Acetate activation and acetoacetate formation in plant systems. Arch. of Biochem. a. Biophysics 49, 343–355 (1954).CrossRefGoogle Scholar
  163. Nafziger, H.: Experimentelle Studien zur Kenntnis der Glyoxalase. Inaug.-Diss. Marburg a. d. Lahn 1937.Google Scholar
  164. Neuberg: Zit. bei Nafziger.Google Scholar
  165. Niel, C.B. van: Introductory remarks on the comparative biochemistry of microorganismes. J. Cellul. a. Comp. Physiol. 41, Suppl. 1 (1953).CrossRefGoogle Scholar
  166. Ochoa, S.: Enzymic mechanisms in the citric acid cycle. Adv. Enzymol. 15, 183–270 (1954).Google Scholar
  167. Postgate, J. R.: Reduction of sulfur compounds by Desulfovibrio desulfuricans. J. Gen. Microbiol. 5, 725–738 (1951).PubMedCrossRefGoogle Scholar
  168. Prévot, A. R., R. Saissac et B. Callame: Études sur l’origine de l’hydrogène pour la réduction des sulphites par les anaerobies. Ann. Inst. Pasteur 79, 93–94 (1950).Google Scholar
  169. Racker, E.: Glutathione as a coenzyme in intermediary metabolism. Glutathione Proc. Symposium, Ridgefield, Conn. 1953, 165–183; durch C. A. 49, 5552 (1955).Google Scholar
  170. Racker, E., and I. Krimsky: The mechanism of oxidation of aldehydes by glyceraldehyde-3-phosphate dehydrogenase. J. of Biol. Chem. 198, 731–743 (1952).Google Scholar
  171. Reed, L. J., and B. G. de Busk: Lipothiamide pyrophosphate: coenzyme for oxydative decarboxylation of α-keto acids. J. Amer. Chem. Soc. 74, 3964–3965 (1952).CrossRefGoogle Scholar
  172. Lipoic acid conjugase. J. Amer. Chem. Soc. 74, 4727–4728 (1952).Google Scholar
  173. Mechanism of enzymatic oxidative decarboxylation of pyruvate. J. Amer. Chem. Soc. 75, 1261–1262 (1953).Google Scholar
  174. Romano, A. H., and W. J. Nickerson: Cystine reductase of pea seeds and yeasts. J. of Biol. Chem. 208, 409–416 (1954).Google Scholar
  175. Saunders, J. P., and W. A. Himwich: Properties of the transsulfurase responsible for conversion of cyanid to thiocyanate. Amer. J. Physiol. 163, 404–409 (1950).PubMedGoogle Scholar
  176. Schöberl, A., u. A. Wagner: Methoden zur Herstellung und Umwandlung von Thiosäuren und ihren Derivaten. In Houben-Weyl, Methoden der organischen Chemie, 4. Aufl., Bd. IX, S. 745–771. Stuttgart: Georg Thieme 1955.Google Scholar
  177. Schuller, W. H., and C. Niemann: The papain-catalyzed synthesis of acyl-D- and L-phenylalanylphenylhydrazides from a series of enantiomorphic pairs of acylated phenylalanines. J. Amer. Chem. Soc. 73, 1644–1646 (1951).CrossRefGoogle Scholar
  178. Shapiro, S. K.: Biosynthesis of methionine from homocysteine and methyl-methionine sulfonium salt. Biochim. et Biophysica Acta 18, 134–135 (1955).CrossRefGoogle Scholar
  179. Shaw, W. H. R.: The inhibition of urease by various metal ions. J. Amer. Chem. Soc. 76, 2160–2163 (1954).CrossRefGoogle Scholar
  180. Sher, I. H., and M. F. Mallette: Purification and study of L-lysine decarboxylase from Escherichia coli B. Arch. of Biochem. a. Biophysics 53, 354–369 (1954).CrossRefGoogle Scholar
  181. Sibly, P. M., and J. G. Wood: The nature of carbonic anhydrase from plant sources. Austral. J. Sci. Res. B 4, 500–510 (1951); durch C. A. 46, 3101 (1952).Google Scholar
  182. Slavik, K.: Die enzymatische Bildung von Hydroxamsäuren aus Amiden und Peptiden. Collect, czechoslov. chem. Commun. 16, 380–390 (1951); durch C. A. 1955, 1020–1021.Google Scholar
  183. Smith, G. N., C. S. Worrel and B. L. Lilligren: Enzymic hydrolysis of chloramphenicol (Chloromycetin). Science (Lancaster, Pa.) 110, 297–298 (1949).PubMedCrossRefGoogle Scholar
  184. Sörbo, B. H.: The active group in rhodanese. Acta chem. scand. 5, 1218–1219 (1953).CrossRefGoogle Scholar
  185. Stearns, R. N.: Respiration, rhoda-nese, and growth in Escherichia coli, J. Cellul. a. Comp. Physiol. 41, 163–170 (1953).CrossRefGoogle Scholar
  186. Sunner, St.: Thioctsäure. Chemie und Energetik. Svensk. kern. Tidskr. 67, 513–522 (1955); durch Chem. Zbl. 1957, 6990.Google Scholar
  187. Symposium on Chemistry and Functions of Co-enzym A. Federat. Proc. 12, 673–715 (1953).Google Scholar
  188. Tombesi, L., A. Baroccio, T. Cervigni, S. Fortini, M. Tarantola e M. E. Venezian: Oxidase, catalase, carbonic anhydrase and peroxidase activity and content of reduced glutathione and of ascorbic acid during the maturation of fruits and seeds. Ann. sper. agr. (Roma) 6, 857–874 (1952); durch C.A. 47, 2835 (1953).Google Scholar
  189. Tombesi, L., and M. Giovannozzi: Enzyme activity during the cure by indirect fire. Tobacco 56, 53–61 (1952); durch C. A. 47, 1791 (1953).Google Scholar
  190. Tytell, A. A., and K. Hewson: Production, purification, and some properties of Clostridium hystolyticum collagenase. Proc. Soc. Exper. Biol. a. Med. 74, 555–558 (1950).Google Scholar
  191. Wallenfels, K., u. H. Sund: Zum Wirkungsmechanismus der Alkoholdehydrogenase aus Hefe. Angew. Chem. 67, 517 (1955).Google Scholar
  192. Über den Mechanismus der Wasserstoffübertragung mit Pyridinnucleotiden. I. Freie SH- Gruppen und Aktivität bei Alkoholdehydrogenase aus Hefe. Biochem. Z. 329, 17–30 (1957).Google Scholar
  193. Weiner, S.: Papain. A review of literature. Paul-Lewis Labs. Inc. 1955; durch C. A. 40, 7190 (1955).Google Scholar
  194. Wieland, Th., J. Franz u. G. Pfleiderer: Über die Bildung von Aminosäuren aus a-Keto-aldehyden. Chem. Ber. 88, 641–646 (1955).CrossRefGoogle Scholar
  195. Wieland, Th., u. H. Schwahn: Zur Struktur und Reaktionsweise organischer Disulfide. Chem. Ber. 89, 421–428 (1956).CrossRefGoogle Scholar
  196. Wlassjuk, P. A., K. M. Dobrotworskaja u. Ss. A. Gorduenko: Aktivität der Urease in der Rhizosphäre von landwirtschaftlichen Kulturen. Ber. Allunions landwirtsch. (Lenin-Orden) Lenin-Akad. 21, 28–31 (1956); durch Chem. Zbl. 1957, 6182.Google Scholar
  197. Wood, J. G., and P. M. Sibly: Carbonic anhydrase activity in plants in relation to zinc content. Austral. J. Sci. Res. B 5, 244–255 (1952); durch C. A. 46, 7182 (1952).Google Scholar
  198. Wood, J. L., and H. Fiedler: β-Mercaptopyruvate a substrate for rhodanese. J. of Biol. Chem. 205, 231–234 (1953).Google Scholar
  199. Woolley, D. W.: Biosynthesis and energy transport by enzymic reduction of onium salts. Nature (Lond.) 171, 323–328 (1953).CrossRefGoogle Scholar
  200. Zelitch, I.: The isolation and action of crystalline glyoxylic acid reductase from tobacco leaves. J. of Biol. Chem. 216, 553–575 (1955).Google Scholar
  201. Alway, F. J.: A nutrient element slighted in agricultural research. J. Amer. Soc. Agron. 32, 913–921 (1940).CrossRefGoogle Scholar
  202. Anderson, A. J., and D. Spencer: Molybdenum in nitrogen metabolism of legumes and non-legumes. Austral. J. Sci. Res. B 3, 414–430 (1950).Google Scholar
  203. Sulfur in nitrogen metabolism of legumes and non-legumes. Austral. J. Sci. Res. B 3, 431–449 (1950).Google Scholar
  204. Barrien, B. S., and J. G. Wood: Studies on sulfur metabolism of plants. II. New Phytologist 38, 257–264 (1939).CrossRefGoogle Scholar
  205. Basford, R. E., and F. M. Huennekens: Studies on thiols. II. J. Amer. Chem. Soc. 77, 3878–3882 (1955).CrossRefGoogle Scholar
  206. Behrens, O.K.: Coenzymes for glyoxalase. J. of Biol. Chem. 141, 503–508 (1941).Google Scholar
  207. Binkley, F.: On the nature of serine dehydrase and cysteine desulfurase. J. of Biol. Chem. 150, 261–262 (1943).Google Scholar
  208. Calvin, M.: Chemical and photochemical reactions of thioctic acid and related disulfides. I. Federat. Proc. 13, 697–711 (1954).Google Scholar
  209. Chibnall, A.C.: Protein metabolism in the plant. New Haven: Yale University Press 1939.Google Scholar
  210. Eaton, S. V.: Influence of sulfur deficiency on the metabolism of the soybean. Bot. Gaz. 97, 68–100 (1935).CrossRefGoogle Scholar
  211. Influence of sulfur deficiency on the metabolism of the sunflower. Bot. Gaz. 102, 536–556 (1941).Google Scholar
  212. Influence of sulfur deficiency on the metabolism of black mustard. Bot. Gaz. 104, 306–315 (1942).Google Scholar
  213. Effects of sulfur deficiency on the growth and metabolism of the tomato. Bot. Gaz. 112, 300–307 (1951).Google Scholar
  214. Eckerson, S. H.: Influence of phosphorus deficiency on metabolism of the tomato (Lycopersicum esculentum Mill.). Contrib. Boyce Thompson Inst. 3, 197–217 (1931).Google Scholar
  215. Conditions affecting nitrate reduction by plants. Contrib. Boyce Thompson Inst. 4, 119–130 (1932).Google Scholar
  216. Ergle, D. R., and F. M. Eaton: Sulfur nutrition of cotton. Plant Physiol. 26, 639–654 (1951).PubMedCrossRefGoogle Scholar
  217. Evans, H. J.: Diphosphopyridine nucleotide-nitrate reductase from soybean nodules. Plant Physiol. 29, 298–301 (1954).PubMedCrossRefGoogle Scholar
  218. Evans, H. J., and A. Nason: Pyridine nucleotide-nitrate reductase from extracts of higher plants. Plant Physiol. 28, 233–254 (1953).PubMedCrossRefGoogle Scholar
  219. Galston, A. W.: Isolation, agglutination and nitrogen analysis of intact oat chloroplasts. Amer. J. Bot. 30, 331–334 (1943).CrossRefGoogle Scholar
  220. Gilbert, F. A.: The place of sulfur in plant nutrition. Bot. Review 17, 671–691 (1951).CrossRefGoogle Scholar
  221. Granick, S.: Quantitative isolation of chloroplasts from higher plants. Amer. J. Bot. 25, 558–561 (1938).CrossRefGoogle Scholar
  222. Chloroplast nitrogen of some higher plants. Amer. J. Bot. 25, 561–567 (1938).Google Scholar
  223. Hammett, F. S.: The chemical stimulus essential for growth by increase in cell number. Protoplasma 7, 297–322 (1929).CrossRefGoogle Scholar
  224. Hanson, E. A.: A note on the metabolism of chloroplast protein. Austral. J. Exper. Biol. a. Med. Sci. 19, 157–159 (1941).CrossRefGoogle Scholar
  225. Hanson, E. A., B. S. Barrien and J. G. Wood: Relations between protein nitrogen, protein sulfur and chlorophyll in the leaves of Sudan grass. Austral. J. Exper. Biol. a. Med. Sci. 19, 231–234 (1941).CrossRefGoogle Scholar
  226. Harrison, B. F., M. D. Thomas and G. R. Hill: Radioautographs showing the distribution of radiosulfur in wheat. Plant Physiol. 19, 245–257 (1944).PubMedCrossRefGoogle Scholar
  227. Heiserich, E.: Sulfur metabolism in maize and tobacco. Z. Pflanzenernährg 37, 55–72 (1935).CrossRefGoogle Scholar
  228. Hendley, D. D., and E. E. Conn: Enzymatic reduction and oxidation of glutathione by illuminated chloroplasts. Arch. of Biochem. a. Biophysics 46, 454–464 (1953).CrossRefGoogle Scholar
  229. Horowitz, N. H., M. Fling, B. O. Phinney and S. C. Shen: Recent experiments on the methionine requiring mutants of Neurospora. Abstracts of Papers, Am. Chem. Soc. Div. Biol. Chem., San Francisco, p. 450, 1949.Google Scholar
  230. Krimsky, I., and E. Racker: Acyl derivatives of glyceraldehyde-3-phosphate dehydrogenase. Science (Lancaster, Pa.) 122, 319–321 (1955).PubMedCrossRefGoogle Scholar
  231. Kylin, A.: The uptake and metabolism of sulfate by deseeded wheat plants. Physiol. Plantarum 6, 775–795 (1953).CrossRefGoogle Scholar
  232. Mandels, G. R.: A quantitative study of chlorosis in Chlorella under conditions of sulfur deficiency. Plant Physiol. 18, 449–462 (1943).PubMedCrossRefGoogle Scholar
  233. Menke, W.: Protoplasm of green plant cells. I. Z. physiol. Chem. 257, 43–48 (1938).Google Scholar
  234. Mertz, E. T., V. L. Singleton and C. L. Garey: The effect of sulfu rdeficiency on the amino acids of alfalfa. Arch. of Biochem. a. Biophysics 38, 139–145 (1952).CrossRefGoogle Scholar
  235. Miller, H. G.: Further studies on relation of sulfates to plant growth and composition. J. Agricult. Res. 22, 101–110 (1921).Google Scholar
  236. Miller, L. P.: DL-Methionine as a source of sulfur by growing plants. Contrib. Boyce Thompson Inst. 14, 443–456 (1947).Google Scholar
  237. Neller, J. R.: Effect of sulfur upon nitrogen content of legumes. Industr. Engin. Chem. 18, 72–73 (1926).CrossRefGoogle Scholar
  238. Nicholas, D. J. D., and A. Nason: Role of molybdenum as a constituent of nitrate reductase from soybean leaves. Plant Physiol. 30, 135–138 (1955).PubMedCrossRefGoogle Scholar
  239. Nightingale, G. T., L. G. Schermerhorn and W. R. Robbins: Effects of sulfur deficiency on metabolism in tomato. Plant Physiol. 7, 565–595 (1932).PubMedCrossRefGoogle Scholar
  240. Noack, K., and E. Timm: Proteins in chloroplasts and cytoplasm of spinach leaves. Naturwiss. 30, 453 (1942).CrossRefGoogle Scholar
  241. Powers, W. L.: Sulfur in relation to soil fertility. Oregon Agric. Exper. Stat. Bull. 199, 5–45 (1923).Google Scholar
  242. Smith, E. L.: Chlorophyll as the prosthetic group in the green leaf. Science (Lancaster, Pa.) 91, 199–200 (1940).PubMedCrossRefGoogle Scholar
  243. Steward, F. C., J. F. Thompson, F. K. Millar, M. D. Thomas and R. H. Hendricks: The amino acids of alfalfa as revealed by paper chromatography with special reference to compounds labeled with sulfur. Plant Physiol. 26, 123–135 (1951).PubMedCrossRefGoogle Scholar
  244. Storey, H. H., and R. Leach: A sulfur-deficiency disease of the tea bush. Ann. Appl. Biol. 20, 23–56 (1933).CrossRefGoogle Scholar
  245. Theorell, H., and Å. Åkesson: Studies on cytochrome c. I., II., III., IV. J. Amer. Chem. Soc. 63, 1804–1827 (1941).CrossRefGoogle Scholar
  246. Thomas, M. D.: Agricultural research with radioactive sulfur and arsenic. Proc. Auburn Conference on Use of Radioactive Isotopes in Agricultural Research. p. 103–117. Alabama Polytechnic Institute, Auburn, Ala., 1948.Google Scholar
  247. Thomas, M. D., and R. H. Hendricks: The hydrolysis of cystine and the fractionation of sulfur in plant tissues. J. of Biol. Chem. 153, 313–325 (1944).Google Scholar
  248. Thomas, M. D., R. H. Hendricks, L. C. Bryner and G. R. Hill: A study of the sulfur metabolism of wheat, barley and corn using radioactive sulfur. Plant Physiol. 19, 227–244 (1944).PubMedCrossRefGoogle Scholar
  249. Thomas, M. D., R. H. Hendricks and G. R. Hill: Some chemical reactions of sulfur dioxide after absorption by alfalfa and sugar beets. Plant Physiol. 19, 212–226 (1944).PubMedCrossRefGoogle Scholar
  250. Sulfur metabolism of plants. Effect of sulfur dioxide on vegetation. Industr. Engin. Chem. 42, 2231–2235 (1950).Google Scholar
  251. Sulfur metabolism in alfalfa. Soil Sci. 70, 19–26 (1950).Google Scholar
  252. Turrell, F. M., and J. R. Weber: Elemental sulfur dust, a nutrient for lemon leaves. Science (Lancaster, Pa.) 122, 119–120 (1955).CrossRefGoogle Scholar
  253. Wildman, S. G., and J. Bonner: The proteins of green leaves. I. Arch. of Biochem. 14, 381–413 (1947).Google Scholar
  254. Wood, J. G.: Metabolism of sulfur in plants. Chronica bot. 7, 1–4 (1942).Google Scholar
  255. Wood, J. G., and B. S. Barrien: Studies on the sulfur metabolism of plants. I. New Phytologist 38, 125–149 (1939).CrossRefGoogle Scholar
  256. Studies on the sulfur metabolism of plants. III. New Phytologist 38, 265–272 (1939).Google Scholar
  257. Akabori, S., and T. Kaneko: Über einen schwefelhaltigen Riechstoff von „Shoyu“. Proc. Imp. Acad. (Tokyo) 12, 131 (1936). Cf. Chem. Zbl. 1936 II, 2391.Google Scholar
  258. André, É., et P. Delaveau: Recherches chimiques sur la composition des essences sulfurées des graines de colza. Oléagineux 9, 591–600 (1954).Google Scholar
  259. Astwood, E. B., M. A. Greer and M. G. Ettlinger: l-5-vinyl-2-thicöxazolidone, an antithyroid compound from yellow turnip and from Brassica seeds. J. of Biol. Chem. 181, 121–130 (1949).Google Scholar
  260. Baddiley, J., G. L. Cantoni and G. A. Jamieson: Structural observations on “Active Methionine”. J. Chem. Soc. 1955, 2662–2664.Google Scholar
  261. Barron, E. S. G.: Thiol groups of biological importance. Adv. Enzymol. 11, 201–266 (1951).Google Scholar
  262. Bersin, Th., A. Müller u. E. Strehler: Methylmethioninsulfoniumsalze. Arzneimittel-Forsch. 6, 174–176 (1956).Google Scholar
  263. Bertram, J., u. H. Walbatjm: Über das Resedawurzelöl. J. prakt. Chem. [2] 50, 555–561 (1894).CrossRefGoogle Scholar
  264. Binkley, F.: Enzymatic cleavage of thioethers. J. of Biol. Chem. 186, 287–296 (1950).Google Scholar
  265. Black, S., and N. G. Wright: Enzymatic formation of glyceryl and phosphoglyceryl methylthiol esters. J. of Biol. Chem. 221, 171–180 (1956).Google Scholar
  266. Blanksma, J. J.: Pharmac. Weekbl. 51, 1383 (1914). Quoted after Stoll and Jucker 1955.Google Scholar
  267. Bodinus: Extractum Capsellae bursae pastoris fluidum. Apoth.-Ztg 35, 183–184 (1920).Google Scholar
  268. Bottomley, W., and D. E. White: The chemistry of Western Australian plants. II. The essential oil of Codono-carpus cotinifolius (Desf.). Roy. Austral. Chem. Inst. J. a. Proc. 17, 31–32 (1950).Google Scholar
  269. Bottomley, W., and D. E. White: Quoted after Chem. Abstr. 45, 820 (1951).Google Scholar
  270. Boutron et Robiquet : Sur la semence de moutarde. J. Pharmacie Chim. [II] 17, 279–308 (1831).Google Scholar
  271. Bussy, A.: Untersuchungen über die Bildung des ätherischen Senföls. Liebigs Ann. 34, 223–230 (1840).CrossRefGoogle Scholar
  272. Bywood, R.: Thesis, University of Leeds, 1953. Quoted after Challenger and Hayward 1954.Google Scholar
  273. Bywood, R., F. Challenger, D. Leaver and M. I. Whitaker: The evolution of dimethyl sulphide from bracken, “Horse’s Tail” and other plants on treatment with sodium hydroxide. Biochemic. J. 48, XXX–XXXI (1951).Google Scholar
  274. Cantoni, G. L.: S-Adenosyl-methionine; a new intermediate formed enzymatically from L-methionine and adenosinetriphosphate. J. of Biol. Chem. 204, 403–416 (1953).Google Scholar
  275. Cantoni, G. L., and D. G. Anderson: Enzymatic cleavage of dimethylpropiothetin by Polysiphonia lanosa. J. of Biol. Chem. 222, 171–177 (1956).Google Scholar
  276. Cantoni, G. L., and D. G. Anderson: (a) Cavallito, C. J., and J. Bailey: Allicin, the antibacterial principle of Allium sativum. I. Isolation, physical properties and antibacterial action. J. Amer. Chem. Soc. 66, 1950–1951 (1944).CrossRefGoogle Scholar
  277. Cantoni, G. L., and D. G. Anderson: (b) Cavallito, C. J., J. S. Buck and C. M. Suter: Allicin, the antibacterial principle of Allium sativum. II. Determination of the chemical structure. J. Amer. Chem. Soc. 66, 1952–1954 (1944).CrossRefGoogle Scholar
  278. Cavallito, C. J., J. H. Bailey and J. S. Buck: Allicin, the antibacterial principle of Allium sativum. III. Its precursor and “Essential Oil of Garlic”. J. Amer. Chem. Soc. 67, 1032–1033 (1945).CrossRefGoogle Scholar
  279. Challenger, F.: Biological methylation. Adv. Enzymol. 12, 429–491 (1951). The biological importance of organic compounds of sulphur. Endeavour 12, No 48 (1953).Google Scholar
  280. Challenger, F., and D. Greenwood: Sulphur compounds of the genus Allium. Biochemic. J. 44, 87–91 (1949).Google Scholar
  281. Challenger, F., and B. J. Hayward: The occurrence of a methylsulphonium derivative of methionine (α-amino-dimethyl-y-butyrothetin) in Asparagus. Chem. a. Ind. 1954, 729–730.Google Scholar
  282. Challenger, F., and Y. C. Liu: The elimination of methylthiol and dimethyl sulphide from methylthiol -and dimethyl-sulphonium compounds by moulds. Rec. Trav. chim. Pays-Bas (Amsterd.) 69, 334–342 (1950).CrossRefGoogle Scholar
  283. Challenger, F., and M.I. Simpson: Studies on biological methylation. Part XII. A precursor of the dimethyl sulphide evolved by Polysiphonia fastigiata. Dimethyl-2-carboxyethylsulphonium hydroxide and its salts. J. Chem. Soc. 1948, 1591–1597.Google Scholar
  284. Delaveau, P.: Recherches sur les sénevols des graines de Brassica, à l’aide de la Chromatographie sur papier. I. Graines de B. nigra et B. juncea. Ann. pharmaceut. franc. 14, 765–769 (1956).Google Scholar
  285. Delaveau, P.: Recherches sur les sénevols des graines de Brassica, à l’aide de la Chromatographie sur papier. II. Graines de B. rapa, B. napus et B. oleracea. Ann. pharmaceut. franc. 14, 770–777 (1956).Google Scholar
  286. Ettlinger, M. G.: Synthesis of the natural antithyroid factor Z-5-vinyl-2-thicöxazolidone. J. Amer. Chem. Soc. 72, 4792–4796 (1950).CrossRefGoogle Scholar
  287. Ettlinger, M. G., and J. E. Hodgkins: The mustard oil of rape seed, allylcarbinyl isothiocyanate, and synthetic isomers. J. Amer. Chem. Soc. 77, 1831–1836 (1955).CrossRefGoogle Scholar
  288. Ettlinger, M. G., and J. E. Hodgkins: The mustard oil of Papaya seed. J. of Org. Chem. 21, 204–205 (1956).CrossRefGoogle Scholar
  289. (a).
    Ettlinger, M. G., and A. J. Lundeen: The mustard oil of Limnanthes douglasii seed, m-methoxybenzyl isothiocyanate. J. Amer. Chem. Soc. 78, 1952–1954 (1956).CrossRefGoogle Scholar
  290. (b).
    Ettlinger, M. G., and A. J. Lundeen: The structure of sinigrin and sinalbin; an enzymatic rearrangement. J. Amer. Chem. Soc. 78, 4172 (1956).CrossRefGoogle Scholar
  291. Ettlinger, M. G., and A. J. Lundeen: First synthesis of a mustard oil glucoside; the enzymatic Lossen rearrangement. J. Amer. Chem. Soc. 79, 1764 (1957).CrossRefGoogle Scholar
  292. Feist, K.: Das ätherische Oel von Cardamine amara L. Apoth.-Ztg 20, 832 (1905).Google Scholar
  293. Gadamer, J.: Über die Bestandteile des schwarzen und des weißen Senfsamens. Arch. Pharmaz. 235, 44–114 (1897).CrossRefGoogle Scholar
  294. (a).
    Gadamer, J.: Über das ätherische Oel von Cochlearia officinalis. Arch. Pharmaz. 237, 92–105 (1899).CrossRefGoogle Scholar
  295. (b).
    Gadamer, J.: Das ätherische Oel von Tropaeolum majus. Arch. Pharmaz. 237, 111–120 (1899).CrossRefGoogle Scholar
  296. (c).
    Gadamer, J.: Ueber ätherische Kressenöle und die ihnen zu Grunde liegenden Glukoside. Arch. Pharmaz. 237, 507–521 (1899).CrossRefGoogle Scholar
  297. Gerretsen, F. C., and N. Haagsma: Occurrence of antifungal substances in Brassica rapa, Brassica oleracea and Beta vulgaris. Nature (Lond.) 168, 659–660 (1951).CrossRefGoogle Scholar
  298. Gmelin, R., G. Hasenmaier u. G. Strauss: Über das Vorkommen von Djenkolsäure und einer C-S-Lyase in den Samen von Albizzia lophantha Benth. (Mimosaceae). Z. Naturforsch. 12 b (1957), in press.Google Scholar
  299. Greer, M. A.: Isolation from Rutabaga seed of progoitrin (L-2-hydroxy-3-butenyl iso thiocyanate glucoside) the precursor of the naturally occurring antithyroid compound, goitrin (L-5-vinyl-2-thiooxazolidone). J. Amer. Chem. Soc. 78, 1260 (1956).CrossRefGoogle Scholar
  300. Greer, M. A., M. G. Ettlinger and E. B. Astwood: Dietary factors in the pathogenesis of simple goiter. J. Clin. Endocrin. 9, 1069–1079 (1949).CrossRefGoogle Scholar
  301. Haagen-Smit, A. J., J. G. Kirchner, C. L. Deasy and A. N. Prater: Chemical studies of pineapple (Ananas sativus Lindl.). II. Isolation and identification of a sulfur-containing ester in pineapple. J. Amer. Chem. Soc. 67, 1651–1652 (1945).CrossRefGoogle Scholar
  302. Haas, P.: The liberation of methyl sulphide by seaweed. Biochemic. J. 29, 1298–1299 (1935).Google Scholar
  303. Heiduschka, A., u. A. Zwergal: Beiträge zur Kenntnis der Geschmacksstoffe von Meerrettich und Rettich. J. prakt. Chem. [2] 132, 201–208 (1931).CrossRefGoogle Scholar
  304. Hine, R., and D. Rogers: The crystal and molecular structure of (+)-S-methyl-L-cysteine S-oxide; a standard of absolute configuration for asymmetric sulphur. Chem. a. Ind. 1956, 1428–1430.Google Scholar
  305. Hofmann, A. W.: Synthese des ätherischen Oels der Cochlearia officinalis. Ber. dtsch. chem. Ges. 7, 508–514 (1874).CrossRefGoogle Scholar
  306. Hopkins, C. Y.: A sulphur-containing substance from the seed of Conringia orientalis. Canad. J. Res., Sect. B 16, 341–344 (1938).CrossRefGoogle Scholar
  307. Ivanovics, G., and S. Horvath: Raphanin, an antibacterial principle of the radish (Raphanus sativus). Nature (Lond.) 160, 297–298 (1947).CrossRefGoogle Scholar
  308. Jansen, E. F.: The isolation and identification of 2,2′-dithiol-isobutyric acid from Asparagus. J. of Biol. Chem. 176, 657–664 (1948).Google Scholar
  309. Jensen, K. A., J. Conti u. A. Kjær: isoThiocyanates. II. Volatile isothiocyanates in seeds and roots of various Brassicae. Acta chem. scand. (Copenh.) 7, 1267–1270 (1953).CrossRefGoogle Scholar
  310. Jirousek, L.: Zur Frage des Brassica-Faktors und des endemischen Kröpf es. Endokrinologie 33, 310–320 (1956).PubMedGoogle Scholar
  311. Jirousek, L.: Isolace a identifikace organickych polysulfidû ze zeli a jejich vztah k Brassica Faktoru. Chem. Listy 50, 1840–1847 (1956).Google Scholar
  312. Jirousek, L.: On the antithyreoidal substances in cabbage and other Brassica plants. Naturwiss. 43, 328–329 (1956).CrossRefGoogle Scholar
  313. (a).
    Kjær, A., and K. Rubinstein: Paper chromatography of thioureas. Acta chem. scand. (Copenh.) 7, 528–536 (1953).CrossRefGoogle Scholar
  314. (b).
    Kjær, A., and J. Conti: isoThiocyanates. V. The occurrence of isopropyl isothiocyanate in seeds and fresh plants of various Cruciferae. Acta chem. scand. (Copenh.) 7, 1011–1012 (1953).CrossRefGoogle Scholar
  315. (c).
    Kjær, A., J. Conti and I. Larsen: iso-Thiocyanates. IV. A systematic investigation of the occurrence and chemical nature of volatile isothiocyanates in seeds of various plants. Acta chem. scand. (Copenh.) 7, 1276–1283 (1953).CrossRefGoogle Scholar
  316. (d).
    Kjær, A., J. Conti and K.A. Jensen: isoThiocyanates. III. The volatile isothiocyanates in seeds of rape (Brassica napus L.). Acta chem. scand. (Copenh.) 7, 1271–1275 (1953).CrossRefGoogle Scholar
  317. (e).
    Kjær, A., K. Rubinstein and K.A. Jensen: Unsaturated five-carbon iso-thiocyanates. Acta chem. scand. (Copenh.) 7, 518–527 (1953).CrossRefGoogle Scholar
  318. (a).
    Kjær, A., and I. Larsen: isoThiocyanates. IX. The occurrence of ethyl isothiocyanate in nature. Acta chem. scand. (Copenh.) 8, 699–701 (1954).CrossRefGoogle Scholar
  319. (b).
    Kjær, A., and K. Rubinstein: isoThiocyanates. VIII. Synthesis of p-hydroxybenzyl isothiocyanate and demonstration of its presence in the glucoside of white mustard (Sinapis alba L.). Acta chem. scand. (Copenh.) 8, 598–602 (1954).CrossRefGoogle Scholar
  320. (a).
    Kjær, A., R. Gmelin and I. Larsen: isoThiocyanates. XII. 3-Methylthiopropyl iso-thiocyanate (Ibervirin), a new naturally occurring mustard oil. Acta chem. scand. (Copenh.) 9, 1143–1147 (1955).CrossRefGoogle Scholar
  321. (b).
    Kjær, A., and R. Gmelin: isoThiocyanates. XL 4-Methylthiobutyl isothiocyanate, a new naturally occurring mustard oil. Acta chem. scand. (Copenh.) 9, 542–544 (1955).CrossRefGoogle Scholar
  322. (c).
    Kjær, A., I. Larsen and R. Gmelin: isoThiocyanates. XIV. 5-Methyl-thiopentyl isothiocyanate, a new mustard oil present in nature as a glucoside (glucoberteroin). Acta chem. scand. (Copenh.) 9, 1311–1316 (1955).CrossRefGoogle Scholar
  323. (d).
    Kjær, A.R. Gmelin and I. Larsen: isoThiocyanates. XIII. Methyl isothiocyanate, a new naturally occurring mustard oil, present as glucoside (glucocapparin) in Capparidaceae. Acta chem. scand. (Copenh.) 9, 857–858 (1955).CrossRefGoogle Scholar
  324. (a).
    Kjær, A., R. Gmelin and R. Boe Jensen: isoThiocyanates. XV. p-Methoxy-benzyl isothiocyanate, a new natural mustard oil occurring as glucoside (glucoaubrietin) in Aubrietia species. Acta chem. scand. (Copenh.) 10, 26–31 (1956).CrossRefGoogle Scholar
  325. (b).
    Kjær, A., R. Gmelin and R. Boe Jensen: isoThiocyanates. XVI. Glucoconringiin, the natural precursor of 5,5-dimethyl-2-oxazolidinethione. Acta chem. scand (Copenh.) 10, 432–438 (1956).CrossRefGoogle Scholar
  326. (c).
    Kjær, A., and R. Gmelin: isoThiocyanates. XVIII. Glucocapparin, a new crystalline isothiocyanate glucoside. Acta chem. scand. (Copenh.) 10, 335–336 (1956).CrossRefGoogle Scholar
  327. (d).
    Kjær, A., and R. Gmelin: isoThiocyanates. XIX. l(-)-5-Methylsulphinylpentyl isothiocyanate, the aglucone of a new naturally occurring glucoside (glucoalyssin). Acta chem. scand. (Copenh.) 10, 1100–1110 (1956).CrossRefGoogle Scholar
  328. (e).
    Kjær, A., and R. Boe Jensen: isoThiocyanates. XX. 4-Pentenyl isothiocyanate, a new mustard oil occurring as a glucoside (glucobrassicanapin) in Nature. Acta chem. scand. (Copenh.) 10, 1365–1371 (1956).CrossRefGoogle Scholar
  329. (f).
    Kjær, A., R. Gmelin and R. Boe Jensen: isoThiocyanates. XXI. (-)-10-Methylsulphinyldecyl isothiocyanate, a new mustard oil present as a glucoside (glucocamelinin) in Camelina species. Acta chem. scand. (Copenh.) 10, 1614–1619 (1956).CrossRefGoogle Scholar
  330. (g).
    Kjær, A., and R. Gmelin: isoThiocyanates. XXII. 3-Benzoyl-oxypropyl isothiocyanate, present as a glucoside (glucomalcolmiin) in seeds of Malcolmia maritima (L.) R.Br. Acta chem. scand. (Copenh.) 10, 1193–1195 (1956).CrossRefGoogle Scholar
  331. (h).
    Kjjer, A., and R. Gmelin: isoThiocyanates XXIII. l(-)-9-Methylsulphinylnonyl isothiocyanate, a new mustard oil present as a glucoside (glucoarabin) in Arabis species. Acta chem. scand. (Copenh.) 10, 1358–1359 (1956).CrossRefGoogle Scholar
  332. (a).
    Kjær, A., and R. Gmelin: isoThiocyanates. XXV. Methyl 4-isothiocyanatobutyrate, a new mustard oil present as a glucoside (glucoerypestrin) in Erysimum species. Acta chem. scand. (Copenh.) 11, 577–578 (1957).CrossRefGoogle Scholar
  333. (b).
    Kjær, A., and R. Gmelin: iso Thiocyanates. XXVIII. A new isothiocyanate glucoside (glucobarbarin) furnishing (-)-5-phenyl-2-oxazolidinethione upon enzymic hydrolysis. Acta chem. scand. (Copenh.) 11 (1957), in press.Google Scholar
  334. Koczka, I., and G. Ivanovics: The antibacterial substance of radish seeds. Acta Univ. szeged, Chem. et Phys. 2, 205–206 (1949). Quoted after: Chem. Abstr. 44, 5538 (1950).Google Scholar
  335. Koolhaas, D. R.: Das Vorkommen von Methylmercaptan in den Blättern der Lasianthus-Arten. Biochem. Z. 230, 446–450(1931).Google Scholar
  336. (a).
    Kuntze, M.: Das ätherische Öl von Cardamine amara L. Arch. Pharmaz. 245, 657–659 (1907).CrossRefGoogle Scholar
  337. (b).
    Kuntze, M.: Das ätherische Öl von Brassica rapa var. rapifera Metzger. Arch. Pharmaz. 245, 660–661 (1907).CrossRefGoogle Scholar
  338. Kitrup, P. A., and P. L. N. Rao: Antibiotic principle of Moringa ptery-gosperma. Part II. Chemical nature of pterygospermin. Indian J. Med. Res. 42, 85–95 (1954).Google Scholar
  339. Leaver, D., and F. Challenger: Studies on biological methylation. Part XVI. Natural sulphonium compounds. The alkyl methyl sulphides evolved from the urine of dogs by boiling alkali. J. Chem. Soc. Lond. 1957, 39–46.Google Scholar
  340. Mannich, C., u. P. Fresenius: Über den Hauptbestandteil des ätherischen Öles der Asa foetida. Arch. Pharmaz. 274, 461–472 (1936).CrossRefGoogle Scholar
  341. Matsukawa, T., H. Kawasaki, T. Iwatsu and S. Yurugi: Synthesis of allithiamine and its homologues. J. of Vitaminol. (Japan) 1, 13–26 (1954).CrossRefGoogle Scholar
  342. McDowall, F. H., I.D. Morton and A. K. R. McDowell: Land-cress taint in cream and butter. New Zealand J. Sci. Technol. Sect. A 28, 305–315 (1947).Google Scholar
  343. McRorie, R.A., G.L. Sutherland, M.S. Lewis, A. D. Barton, M. R. Gazener and W. Shive: Isolation and identification of a naturally occurring analog of methionine. J. Amer. Chem. Soc. 76, 115–118 (1954).CrossRefGoogle Scholar
  344. Mitsuhashi, S.: Decomposition of thioether derivatives by bacteria. Jap. J. of Exper. Med. 20, 211–222 (1949).Google Scholar
  345. Mitsuhashi, S.: Quoted after: Chem. Abstr. 44, 3088 (1950).Google Scholar
  346. Morris, C. J., and J. F. Thompson: The identification of l(+)-S-methylcysteine sulphoxide in plants. J. Amer. Chem. Soc. 78, 1605–1608 (1956).CrossRefGoogle Scholar
  347. Nakamura, X.: Über das Vorkommen von Methylmercaptan in frischer Raphanuswurzel. Biochem. Z. 164, 31–33 (1925).Google Scholar
  348. Nencki, M.: Über das Vorkommen von Methylmercaptan im menschlichen Harn nach Spargelgenuß. Arch. exper. Path. u. Pharmakol. 28, 206–209 (1891).CrossRefGoogle Scholar
  349. Neuberg, C., u. J. Wagner: Über die Verschiedenheit der Sulfatase und Myrosinase VIII. Mitt. über Sulfatase. Biochem. Z. 174, 457–463 (1926).Google Scholar
  350. Patel, C.K., S. N. Iyer, J. J. Sudborough and H. E. Watson: Über das Fett von Salvadora oleoides: Khakanfett. J. Indian Inst. Sci., Sect. A 9, 117–132 (1926). Quoted after: Chem. Zbl. 1927 I, 465.Google Scholar
  351. Puntambekar, S. V.: Mustard oils and mustard oil gluco-sides occurring in the seed kernels of Putranjiva Roxburghii Wall. Proc. Indian Acad. Sci., Sect. A 32, 114–122 (1950).Google Scholar
  352. Raciszewski, Z. M., E. Y. Spencer and L. W. Trevoy: Chemical studies of a goitrogenic factor in raposeed oilmeal. Canad. J. Technol. 33, 129–133 (1955).Google Scholar
  353. Ragland, J. B., and J. L. Liverman: S-Methyl-L-cysteine as a naturally occurring metabolite in Neurospora crassa. Arch. of Biochem. a. Biophysics 65, 574–576 (1956).Google Scholar
  354. Salkowski, H.: Über einige Derivate der p-Oxyphenylessigsäure und das ätherische Öl des weißen Senfs. Ber. dtsch. chem. Ges. 22, 2137–2144 (1889).CrossRefGoogle Scholar
  355. Sandberg, M., and O. M. Holly: Note on myrosin. J. of Biol. Chem. 96, 443–447 (1932).Google Scholar
  356. Satoh, K., and K. Marino: Structure of adenylthiomethylpentose. Nature (Lond.) 165, 769–770 (1950).CrossRefGoogle Scholar
  357. Schmid, H., u. P. Karrer: Über Inhaltsstoffe des Rettichs. I. Über Sulphoraphen, ein Senf öl aus Rettichsamen (Raphanus sativus L. var. alba). Helvet. chim. Acta 31, 1017–1028 (1948).PubMedCrossRefGoogle Scholar
  358. Schneider, W.: Über Cheirolin, das Senf öl des Goldlacksamens. Sein Abbau und Aufbau. Liebigs Ann. 375, 207–254 (1910).CrossRefGoogle Scholar
  359. Schneider, W., u. H. Kaufmann: Untersuchungen über Senf öle. II. Erysolin, ein Sulfonsenföl aus Erysimum Perofskianum. Liebigs Ann. 392, 1–15 (1912).CrossRefGoogle Scholar
  360. Schneider, W., u. L. A. Schütz: Untersuchungen über Senföl-glykoside. II. Glucocheirolin. Ber. dtsch. chem. Ges. 46, 2634–2640 (1913).CrossRefGoogle Scholar
  361. (a).
    Schneider, W., D. Clibbens, G. Hüllweck u. W. Steibelt: Untersuchungen über Senföle: V. Thiourethane und Thiourethanäther aus einigen natürlich vorkommenden Senf ölen. Ber. dtsch. chem. Ges. 47, 1248–1269 (1914).CrossRefGoogle Scholar
  362. (b).
    Schneider, W., u. F. Wrede: Untersuchungen über Senfölglucoside. V. Zur Konstitution des Sinigrins. Ber. dtsch. chem. Ges. 47, 2225–2229 (1914).CrossRefGoogle Scholar
  363. Schultz, O.-E., u. R. Gmelin: Papierchromatographie der Senfölglucosid-Drogen. Z. Naturforsch. 7 b, 500–506 (1952).Google Scholar
  364. Schultz, O.-E., u. R. Gmelin: Papierchromatographie senfölglucosidhaltiger Pflanzen. Z. Naturforsch. 8b, 151–156 (1953).Google Scholar
  365. (a).
    Schultz, O.-E., u. R. Gmelin: Das Senfölglukosid „Glukoiberin“ und der Bitterstoff „Ibamarin“ von Iberis amara L. (Schleifenblume). Arch. Pharmaz. 287/59, 404–411 (1954).CrossRefGoogle Scholar
  366. (b).
    Schultz, O.-E., u. R. Gmelin: Das Senfölglukosid von Tropaeolum majus L. (Kapuzinerkresse) und Beziehungen der Senfölglukoside zu den Wuchsstoffen. Arch. Pharmaz. 287/59, 342–350(1954).CrossRefGoogle Scholar
  367. Schultz, O.-E., u. H. Wagner: Kristallisierte Azetylderivate von nicht oder schwer kristallisierenden Senfölglukosiden. Arch. Pharmaz. 288/60, 525–532 (1955).CrossRefGoogle Scholar
  368. (a).
    Schultz, O.-E., u. W. Wagner: Trennung der Senfölglucoside durch absteigende Papierchromatographie. Z. Naturforsch. IIb, 73–78 (1956).Google Scholar
  369. (b).
    Schultz, O.-E., u. W. Wagner: Glucoalyssin, ein neues Senfölglucosid aus Alyssum-Arten. Z. Naturforsch. 11b, 417–419 (1956).Google Scholar
  370. (c).
    Schultz, O.-E., u. W. Wagner: Senfölglukoside als genuine Muttersubstanzen von natürlich vorkommenden antithyreoiden Stoffen. Arch. Pharmaz. 289/61, 597–604 (1956).CrossRefGoogle Scholar
  371. Semmler, F. W.: Über das ätherische Öl von Allium ursinum L. Liebigs Ann. 241, 90–150 (1887).CrossRefGoogle Scholar
  372. Semmler, F. W.: Über schwefelhaltige ätherische Öle. Asa foetida Öl. Arch. Pharmaz. 229, 1–31 (1891).CrossRefGoogle Scholar
  373. (a).
    Semmler, F. W.: Über das ätherische Öl des Knoblauchs (Allium sativum). Arch. Pharmaz. 230, 434–443 (1892).CrossRefGoogle Scholar
  374. (b).
    Semmler, F. W.: Das ätherische Öl der Küchenzwiebel (Allium Cepa L.). Arch. Pharmaz. 230, 443–448 (1892).CrossRefGoogle Scholar
  375. Simandl, J., u. J. Franc: Die Isolierung des Tetraäthylthiuramdisulphids aus dem Tintenmistpilz (Coprinus atramen-tarius). Coll. czechoslov. Chem. Commun. 22, 331–332 (1957).Google Scholar
  376. Stahl, W.H., B. McQue, G. R. Mandels and R. G. H. Siu: Microbiological degradation of wool. I. Sulfur metabolism. Arch. of Biochem. 20, 422–432 (1949).Google Scholar
  377. Stahmann, M. A., K. P. Link and J. C. Walker: Mustard oils in crucifers and their relation to clubroot. J. Agricult. Res. 67, 49–63 (1943).Google Scholar
  378. Stoll, A., u. E. Jucker: Modern Methods of Plant Analysis, vol. IV. Berlin-Göttingen-Heidelberg: Springer 1955.Google Scholar
  379. Stoll, A., R. Morf, A. Rheiner u. J. Renz: Über Inhaltsstoffe aus Petasites officinalis Moench. I. Petasin und die Petasolester B und C. Experientia (Basel) 12, 36C–368 (1956).CrossRefGoogle Scholar
  380. Stoll, A., u. E. Seebeck: Über Alliin, die genuine Muttersubstanz des Knoblauchöls. Experientia (Basel) 3, 114–115 (1947).CrossRefGoogle Scholar
  381. Stoll, A., u. E. Seebeck: Über Alliin, die genuine Muttersubstanz des Knoblauchöls. Helvet. chim. Acta 31, 189–210 (1948).PubMedCrossRefGoogle Scholar
  382. Stoll, A., u. E. Seebeck: Über den enzymatisehen Abbau des Alliins und die Eigenschaften der Alliinase. Helvet. chim. Acta 32, 197–205 (1949).PubMedCrossRefGoogle Scholar
  383. Stoll, A., u. E. Seebeck: Chemical investigations on alliin, the specific principle of garlic. Adv. Enzymol. 11, 377–400 (1951).Google Scholar
  384. Synge, R.L.M., and J. C. Wood: (+)-(S-Methyl-L-cysteine S-oxide) in cabbage. Biochemic. J. 64, 252–259 (1956).Google Scholar
  385. Ter Meulen, H.: Recherches expérimentales sur la nature des sucres de quelques gluco-sides. Rec. Trav. chim. Pays-Bas (Amsterd.) 24, 475–483 (1905).Google Scholar
  386. Thompson, J. F., C. J. Morris and R. M. Zacharius: Isolation of (-)S-methyl-L-cysteine from beans (Phaseolus vulgaris). Nature (Lond.) 178, 593 (1956).CrossRefGoogle Scholar
  387. Vigneaud, V. du: A trail of research. Ithaca, N. Y.: Cornell University Press 1952.Google Scholar
  388. Wagner, W.: Papierchromatographische Analyse der Senfölglucoside, präparative Darstellung ihrer Acetylderivate und ein Beitrag zu ihrer allgemeinen Struktur. Inaug.-Dissert. Tübingen 1956, p. 82.Google Scholar
  389. Weygand, F., R. Junk u. D. Leber: Adenyl-thiomethylpentose. Hoppe-Seylers Z. 291, 191–196 (1952).Google Scholar
  390. Weygand, F., O. Trauth u. R. Löwenfeld: Konstitutionsaufklärung des Thiozuckers der Adenylthiomethylpentose. Chem. Ber. 83, 563–567 (1950).CrossRefGoogle Scholar
  391. Will, H.: Untersuchungen über die Constitution des ätherischen Öls des schwarzen Senfs. Liebigs Ann. 52, 1–51 (1844).CrossRefGoogle Scholar
  392. Wolff, E. C., S. Black and P. F. Downey: Enzymatic synthesis of S-methylcysteine. J. Amer. Chem. Soc. 78, 5958 (1956).CrossRefGoogle Scholar
  393. Wright, L. D., E.L. Cresson, J. Valiant, D.E. Wolf and K. Folkers: Biotin l-sulfoxide. III. The characterisation of biotin l-sulfoxide from a microbiological source. J. Amer. Chem. Soc. 76, 4163–4166 (1954).CrossRefGoogle Scholar
  394. Zwergal, A.: Beitrag zur Kenntnis der Inhaltsstoffe des Kohlrabis. Pharmazie 6, 245 (1951).PubMedGoogle Scholar
  395. Zwergal, A.: Der Brassica-Faktor und andere antithyreoide Stoffe als die Ursache der Kröpf -noxe. Pharmazie 7, 93–97 (1952).PubMedGoogle Scholar
  396. Baalsrud, K. u. K. S.: Studies on Thiobacillus denitrificans. Arch. Mikrobiol. 20, 34–62 (1954).PubMedCrossRefGoogle Scholar
  397. Baars, J. K.: Over sulphaatreductie door bacterien. Diss. Delft 1930.Google Scholar
  398. Baas-Becking, L. G. M.: Studies on sulphur bacteria. Ann. of Bot. 39, 613–650 (1925).Google Scholar
  399. Baas-Becking, L. G. M.: On organisms living in concentrated brine. Tijdschr. nederl. dierkd. Verigg, 3. Ser. Afl. 1, 1928.Google Scholar
  400. Baas-Becking, L. G. M., and E. J. F. Wood: Biological processes in the estuarine environment. I., II. Ecology of the sulphur cycle. Proc. Kon. Ned. Akad. v. Wetensch., Ser. B 58, Nr 3, 160–181 (1955).Google Scholar
  401. Bahr, H., u. W. Schwartz: Untersuchungen zur Ökologie farbloser fädiger Schwefelmikroben. Biol. Zbl. 75, 451–464 (1956).Google Scholar
  402. Vergleichende cyctologische Untersuchungen an farblosen fädigen Schwefelmikroben und an hormo-gonalen Cyanophyceen. Biol. Zbl. (im Druck) 1957.Google Scholar
  403. Bastin, E. S.: A hypothesis of bacterial influence in the genesis of certain sulfide ores. J. Geol. 34, 773–792 (1926).CrossRefGoogle Scholar
  404. Baumann, A., u. V. Denk (Czurda): Zur Physiologie der Sulfatreduktion. Arch. Mikrobiol. 15, 283–307 (1951).CrossRefGoogle Scholar
  405. Bavendamm, W.: Die farblosen und roten Schwefelbakterien des Süß- und Salzwassers. Pflanzenforschungen, H. 2. Jena 1924s.Google Scholar
  406. Bavendamm, W.: Die mikrobiologische Kalkfällung in der tropischen See. Arch. Mikrobiol. 3, 205–276 (1932).CrossRefGoogle Scholar
  407. Bavendamm, W.: Kultur der am Kreislauf des Schwefels beteiligten Bakterien. In Abderhaldens Handbuch der biologischen Arbeitsmethoden, Abt. 12/2, S. 483–546. 1934.Google Scholar
  408. Beerens, H., et N. Hvid-Hansen: Présence dans les eaux sulfureuses francaises de bactéries réductrices de sulfate et d’une variété protéolytique d’Actino-bacterium israeli: A. israeli var. liquefaciens (n. sp.). C. r. Acad. Sci. Paris 234, 480–482 (1952).PubMedGoogle Scholar
  409. Beerstecher E. jr.: Petroleum Microbiology. Houston and New York: Elsevier Press Inc. 1954.Google Scholar
  410. Beijerinck, M. W.: Über Sp. desulfuricans als Ursache der Sulfatreduktion. Zbl. Bakter. II 1, 1–9, 49–59, 104–114 (1895).Google Scholar
  411. Breed, R. S., E. G. D. Murray and A. P. Hitchens: Bergey’s Manual of Determinative bacteriology. Baltimore 1948.Google Scholar
  412. Böcher, T. W.: Studies on the sapropelic flora of the lake Flynders with special reference to the Oscillatoriaceae. Kgl. danske Vidensk. Selsk., biol. Medd. 21, Nr 1, 1–45 (1949).Google Scholar
  413. Butlin, K. R.: Some malodorous activities of sulphate-reducing bacteria. Proc. Soc. Appl. Bacter. 1949, 39–42.Google Scholar
  414. Butlin, K. R.: The bacterial sulphur cycle. Research (Lond.) 6, 184–191 (1953).Google Scholar
  415. Butlin, K. R., and J. R. Postgate: Microbiological formation of sulphide and sulphur. Symposium microbial metabolism. Riass. IV. Congr. Internat. Microbiol. Rom 1953.Google Scholar
  416. Butlin, K. R.: The microbiological formation of sulphur in Cyrenaican lakes. In J. L. Cloudsley-Thompson, Biology of Deserts. London: Inst. of Biology 1954.Google Scholar
  417. Cataldi, Maria S.: Aislamiento di Beggiatoa alba en cultivo puro. Rev. Inst. Bacter. (Buenos Aires) 9, 393–423 (1940).Google Scholar
  418. Czurda, V.: Zur Kenntnis der bakteriellen Sulfatreduktion. I. Arch. Mikrobiol. 11, 187–204 (1940).CrossRefGoogle Scholar
  419. Czurda, V.: Schwefelwasserstoff als ökologischer Faktor der Algen. Zbl. Bakter. II 103, 285–311 (1941).Google Scholar
  420. Datta, S. C.: Sulphate reduction and production of elemental sulphur by bacteria. J. Sci. a. Industr. Res. (India) 5, 28–30 (1946).Google Scholar
  421. Denk (Czurda), V.: Zur Frage der Ammonentstehung im Stoffkreislauf der Natur. Arch. Mikrobiol. 15, 308–314 (1950).CrossRefGoogle Scholar
  422. Edwards, A. B., and G. Baker: Some influence of supergene iron sulphides in relation of their environments of deposition. J. Sedim. Petrology 21, 34–46 (1951).Google Scholar
  423. Ehrenberg, C. G.: Mikrogeologie. Text und Atlas. Leipzig: L. Voss 1854.Google Scholar
  424. Gale, H. S.: Salines in the Owens, Searles and Panamint basins, Southeastern California, U.S. Geol. Surv. Bull. 580, 251–323 (1913).Google Scholar
  425. Galliher, E. W.: The sulfur cycle in sediments. J. Sedim. Petrology 3, 51–63 (1933).CrossRefGoogle Scholar
  426. Gest, H.: Metabolic patterns in photo-synthetic bacteria. Bacter. Rev. 15, 183–210 (1951).Google Scholar
  427. Ghose, T. K., and T. Wikén: Inhibition of bacterial sulphate-reduction in presence of short chain fatty acids. Physiol. Plantaram (Copenh.) 8, 116–135 (1955).CrossRefGoogle Scholar
  428. Grossmann, J. P., and J. R. Postgate: Cultivation of sulphate-reducing bacteria. Nature (Lond.) 171, 600–602 (1953).CrossRefGoogle Scholar
  429. Happold, F. C., K. J. Johnstone, H. C. Rogers and J. B. Youatt: The isolation and characteristics of an organism oxidizing thiocyanate. J. Gen. Microbiol. 10, 261–266 (1954).PubMedCrossRefGoogle Scholar
  430. Harold, Ruth, and R. Y. Stanier: The genera Leucothrix and Thiothrix. Bacter. Rev. 10, 49–64 (1955).Google Scholar
  431. Hunt, W. F.: The origin of the sulphur deposits of Sicily. Econom. Geol. 10, 543–579 (1915).CrossRefGoogle Scholar
  432. Hvid-Hansen, N.: Sulfate-reducing and hydrocarbon-producing bacteria in ground-water. Acta path. scand. (Kobenh.) 29, 314–334 (1951).CrossRefGoogle Scholar
  433. Issatschenko, V.: The microorganisms of the lower limits of the biosphere. J. Bacter. 40, 379–381 (1940).Google Scholar
  434. Leathen, W. W., S. A. Braley jr. and L. D. McIntyre: The role of bacteria in the formation of acid from certain sulfuritic constituents associated with bituminous coal. I. Thiobacillus thiooxidans. II. Ferrous iron oxidizing bacteria. Appl. Microbiol. 1, 61–64, 65–68 (1953).PubMedGoogle Scholar
  435. Macnamara, J., and H. G. Thode: The distribution of S34 in nature and the origin of native sulphur deposits. Research (Lond.) 4, 582–583 (1951).Google Scholar
  436. Metzner, P.: Zur Kenntnis der Morphologie und Bewegung von Thiovulum Mülleri (Warming) Lauterborn. Biol. Zbl. 68, 49–58 (1949).Google Scholar
  437. Miller, L. P.: Rapid formation of high concentrations of hydrogen sulfide by sulfate-reducing bacteria. Contrib. Boyce Thompson Inst. 15, 437–465 (1949).Google Scholar
  438. Miller, L. P.: Tolerance of sulfate-reducing bacteria to hydrogen sulfide. Contrib. Boyce Thompson Inst. 16, 78–83 (1950).Google Scholar
  439. Miller, L. P.: Formation of metal sulfides through the activities of sulfate-reducing bacteria. Contrib. Boyce Thompson Inst. 16, 85–89 (1950).Google Scholar
  440. Müller, A., u. W. Schwartz: Geomikrobiologische Untersuchungen. III. Über das Vorkommen von Mikroorganismen in Salzlagerstätten. Z. dtsch. geol. Ges. 105, 789–802 (1955).Google Scholar
  441. Murzaiev, P. M.: Genesis of some sulphur deposits of the USSR. Econom. Geol. 32, 69–103 (1937).CrossRefGoogle Scholar
  442. Nadson, S.: Les microorganismes comme facteurs géologiques. Petersburg: 1903. [Russisch.]Google Scholar
  443. Niel, O. B. van: On the morphology and physiology of the purple and green sulphur bacteria. Arch. Mikrobiol. 3, 1–112 (1932).CrossRefGoogle Scholar
  444. Nikitinsky, J.: Die anaerobe Bindung des Wasserstoffs durch Mikroorganismen. Zbl. Bakter. II 19, 495–499 (1907).Google Scholar
  445. Ohle, W.: Der schwefelsaure Tonteich bei Reinbeck. Arch. f. Hydrobiol. 30, 604 (1936).Google Scholar
  446. Parker, C. D.: Species of sulfur bacteria associated with the corrosion of concrete. Nature (Lond.) 159, 439 (1947).CrossRefGoogle Scholar
  447. Parker, C. D., and J. Prisk: The oxidation of inorganic compounds of sulphur by various sulphur bacteria. J. Gen. Microbiol. 8, 344–364 (1953).PubMedCrossRefGoogle Scholar
  448. Pop, L. J. J.: The influence of hydrogen sulphide on growth and metabolism of green algae. Thesis Univ. Leiden 1936. Delft 1936.Google Scholar
  449. Postgate, J. R.: Competitive inhibition of sulphate reduction by selenate. Nature (Lond.) 164, 67–71 (1949).CrossRefGoogle Scholar
  450. Postgate, J. R.: Growth of sulphate-reducing bacteria in sulphate-free media. Research (Lond.) 5, 189–190 (1952).Google Scholar
  451. Postgate, J. R.: On the nutrition of Desulphovibrio desulphuricans: A correction. J. Gen. Microbiol. 9, 440–444 (1953).PubMedCrossRefGoogle Scholar
  452. Postgate, J. R.: Presence of cyctochrome in an obligate anaerobe. Biochemic. J. 56, XI–XII (1954).Google Scholar
  453. Prévot, A. R.: Recherches sur la reduction des sulfates et des sulfites mineraux par les bactéries anaérobies. Ann. Inst. Pasteur 75, 571–574 (1948).Google Scholar
  454. Prévot, A. R.: Anaérobies réducteurs des sulfates et formation des pétroles. Ann. Inst. Pasteur 77, 400–418 (1949).Google Scholar
  455. Pringsheim, E. G.: Die Stellung der grünen Bakterien im System der Organismen. Arch. Mikrobiol. 19, 353–364 (1953).PubMedCrossRefGoogle Scholar
  456. Rippel-Baldes, A.: Die Energieverhältnisse bei einigen Vorgängen anaerober Atmung. Biol. Zbl. 67, 60–64 (1948).Google Scholar
  457. Rippel-Baldes, A.: Grundriß der Mikrobiologie. Berlin-Göttingen-Heidelberg: Springer 1955.Google Scholar
  458. Schneiderhöhn, H.: Erzlagerstätten. Stuttgart: Piscator-Verlag 1949.Google Scholar
  459. Schwartz, W., u. A. Müller: Erdölbakteriologie. Erdöl u. Kohle 1, 232–240 (1948).Google Scholar
  460. Schwartz, W., u. A. Müller: Geomikro-biologie, Entwicklung und Stand eines neuen Forschungsgebietes. Erdöl u. Kohle 6, 523–527 (1953).Google Scholar
  461. Schwartz, W., u. A. Müller: Mikrobiologie des Erdöls. Wiss. Z. der Ernst-Moritz-Arndt-Univ. Greifswald Festjahrg. zur 500-Jahrfeier, Math.-Naturwiss. Reihe 5, 281–288 (1955/56).Google Scholar
  462. Senez, J. C.: Étude comparative de la croissance de Sporovibrio desulphuricans sur pyruvate et sur lactate de soude. Ann. Inst. Pasteur 80, 395–408 (1951).Google Scholar
  463. Senez, J. C.: Concurrence of autotrophic and heterotrophic metabolism in growing and in resting cells of sulphate-reducing bacteria. J. Gen. Microbiol. 11, VI–VII (1954).Google Scholar
  464. Shturm L. D.: Zum Studium der Microflora schwefelhaltiger Ablagerungen. Mikrobiologija USSR. 6, 481–487 (1937).Google Scholar
  465. Sisler, F. D., and Cl. E. Zobell: Hydrogen utilizing sulfate-reducing bacteria in marine sediments. J. Bacter. 60, 747–756 (1950);Google Scholar
  466. Sisler, F. D., and Cl. E. ZoBell: Hydrogen utilizing sulfate-reducing bacteria in marine sediments. J. Bacter. 62, 117–127 (1951).Google Scholar
  467. Sisler, F. D., and Cl. E. ZoBell: Nitrogen-fixation by sulfate-reducing bacteria indicated by Nitrogen/Argon ratios. Science (Lancaster, Pa.) 113, 511–512 (1951).Google Scholar
  468. Starkey, R.: A study of spore formation and other morphological characteristics of Vibrio desulfuricans. Arch. Mikrobiol. 9, 268–304 (1938).CrossRefGoogle Scholar
  469. Starkey, R.L., W. Segal and R. A. Manaker: Sulfur products of the decomposition of methionine and cystine by microorganisms. Riass. IV. Congr. Internat. Microbiol. Rom 1, 167–168 (1953).Google Scholar
  470. Stephenson, Marjory, and L. H. Stickland: Hydrogenase II. The reduction of sulphate to sulphide by molecular hydrogen. Biochemic. J. 25, 215–220 (1931).Google Scholar
  471. Temple, K. L., and A. R. Colmer: The autotrophic oxidation of iron by a new bacterium: Thiobacillus ferrooxidans. J. Bacter. 62, 605–611 (1951).Google Scholar
  472. Temple, K. L., and E. W. Delohamps: Autotrophic bacteria and the formation of acid in bituminous coal mines. Appl. Microbiol. 1, 255–258 (1953).PubMedGoogle Scholar
  473. Temple, K. L., and W. A. Koehler: Drainage from bituminous coal mines. West Virginia Bull. 1954. Eng. Exp. Sta. Res. Bull. 25.Google Scholar
  474. Thiessen, R.: Occurence and origin of finely disseminated sulfur compounds in coal. Trans. Amer. Inst. Mining a. Metallurg. Engr. 63, 913–931 (1920).Google Scholar
  475. Thode, H. G., H. Kleerekoper and D. McElcheran: Isotope fractionation in the bacterial reduction of sulphate. Research (Lond.) 4, 581–582 (1951).Google Scholar
  476. Thode, H. G., R. K. Wanless and R. Wallouch: The origin of native sulphur deposits from isotope fractionation studies. Ann. Meeting Geol. Soc. of Amer. 1953.Google Scholar
  477. Trask, P. D.: The origin of the ore of the Mansfeld Kupferschiefer, Germany. A Review of the current literature. Econom. Geol. 20, 746–761 (1925).CrossRefGoogle Scholar
  478. Tudge, A. P., and H. G. Thode: Thermodynamic properties of isotop compounds of sulphur. Canad. J. of Res., Sect. B 28, 567–578 (1950).CrossRefGoogle Scholar
  479. Wight, K. M., and R. L. Starkey: Utilization of hydrogen by sulfate-reducing bacteria and its significance in anaerobic corrosion. J. Bacter. 50, 238 (1945).Google Scholar
  480. Youatt, J. B.: Studies on the metabolism of Thiobacillus thiocyanoxidans. J. Gen. Microbiol. 11, 139–149 (1954).PubMedCrossRefGoogle Scholar
  481. Baars, J. K.: Cité par Bultin et al., 1949. Over Sulfaatreductie door bacteriën. Diss. Delft 1930.Google Scholar
  482. Barker, H. A.: On the biochemistry of the methane fermentation. Arch. Mikrobiol. 7, 404 (1936).CrossRefGoogle Scholar
  483. Barker, H.A., S. Ruben and M. D. Kamen: The reduction of radioactive carbon dioxide by methane producing bacteria. Proc. Nat. Acad. Sci. U.S.A. 26, 426 (1940).CrossRefGoogle Scholar
  484. Bavendamm Chlorobacteria. Erg. Biol. 18, 49 (1936).Google Scholar
  485. Beauchamp, R. S. A.: Lake Tanganyika. Nature (Lond.) 157, 183 (1946).CrossRefGoogle Scholar
  486. Beauchamp, R. S. A.: Sulphates in african inland waters. Nature (Lond.) 171, 769 (1953).CrossRefGoogle Scholar
  487. Beijerinck, N. M.: Über Spirillum desulfuricans als Ursache von Sulfatreduktion. Zbl. Bakter. II 1, 1, 49, 104 (1895).Google Scholar
  488. Beijerinck, N. M.: Über die Bakterien, welche sich im Dunkel mit Kohlensäure als Kohlenstoffquelle ernähren können. Zbl. Bakter. II 2, 593 (1904).Google Scholar
  489. Benecke, W.: Bakteriologie des Meeres. In E.Abderhaldens Handbuch der biologischen Arbeitsmethoden, Bd. 5, Abt. IX. Berlin 1933.Google Scholar
  490. Bernheim, F., and M. L. C. Bernheim: The effect of titanum on the oxidation of sulfhydryl groups by various tissues. J. of Biol. Chem. 127, 695 (1939).Google Scholar
  491. Bersin, Th.: Die Phytochemie des Schwefels. Adv. Enzymol. 10, 223 (1950).Google Scholar
  492. Blaschko, E. T., D. B. Cowie and M. K. Sand: The metabolic fate of sulfate sulfur. J. Bacter. 63, 309 (1952).Google Scholar
  493. Blaschko, H.: Biochemic. J. 36, 571 (1942).Google Scholar
  494. Bolton, E. T., D. B. Cowie and M. K. Sands: Sulfur metabolism in Escherichia coli. J. Bacter. 63, 309 (1952).Google Scholar
  495. Breed, R. S., E. G. D. Murray and A. P. Hitchkens: Bergey’s manual of determinative bacteriology. 6st edit. Baltimore: Williams & Wilkins Co. 1948.Google Scholar
  496. Buder, J.: Zur Bakteriologie des Bakteriopurpurins und der Purpurbakterien. Jb. wiss. Bot. 58, 525 (1919).Google Scholar
  497. Bunker, H. J.: Microbiological experiments in anaerobic corrosion. J. Soc. Chem. Industr. (Lond.) 58, 93 (1938).Google Scholar
  498. Butlin, K. R.: The bacterial sulphur cycle. Research (Lond.) 6, 184 (1953).Google Scholar
  499. Butlin, K. R., and M. E. Adams: Autotrophic growth of sulphate reducing bacteria. Nature (Lond.) 160, 154 (1947).CrossRefGoogle Scholar
  500. Butlin, K. R., M.E. Adams and M. Thomas: The isolation and cultivation of sulphate reducing bacteria. J. Gen. Microbiol. 3, 46 (1949).PubMedCrossRefGoogle Scholar
  501. Butlin, K. R., and J. R. Postgate: Microbiological formation of sulphide and sulphur. Symposium on microbial metabolism. Roma, Istituto Superiore di Sanita 1953.Google Scholar
  502. Butlin, K. R., and J. R. Postgate: The microbiological formation of sulphur in Cyrenaican Lakes. In: Biology of desert, J. L. Cloudsley-Thompson, Institute of Biology, London 1953.Google Scholar
  503. Challenger, F.: Biological methylation. Adv. Enzymol. 12, 429 (1951).Google Scholar
  504. Chape-Vdlle, F., and P. Fromageot: La formation enzymatique de l’acide cystéine-sulfinique à partir de sulfite. Biochim. et Biophysica Acta 14, 415 (1954).CrossRefGoogle Scholar
  505. Cohn, F.: Zwei neue Beggiatoen. Hedwigia 4, 81 (1865).Google Scholar
  506. Cramer: Cité par Winogradsky 1949.Google Scholar
  507. Delden, A. van: Beitrag zur Kenntnis der Sulfatreduktion durch Bakterien. Zbl. Bakter. II 11, 31, 113 (1903).Google Scholar
  508. Desnuelle, P.: Dégradation anaérobie de la cystéine par- B. coli. III. Spécifité optique de la cystéinase. Enzymologia (Den Haag) 6, 387 (1939).Google Scholar
  509. Desnuelle, P., u. C. Fromageot: La décomposition anaérobie de la cystéine par Bacterium coli. I. Existence d’une cystéinase, ferment d’adaptation. Enzymologia (Den Haag) 6, 80 (1939).Google Scholar
  510. Dziewiatkowsky, D. D.: Fate of ingested sulfide sulfur, labeled with radioactive sulfur, in the rat. J. of Biol. Chem. 161, 723 (1945).Google Scholar
  511. Elion, L.: A thermophilic sulphate reducing bacterium. Zbl. Bakter. II 63, 58 (1925).Google Scholar
  512. Engelmann, W.: Die Purpurbakterien und ihre Beziehungen zum Licht. Bot. Ztg 46, 662 (1888).Google Scholar
  513. Foster, J. W.: Autotrophic assimilation of carbon dioxide. Dans: C. W. Werkan and P. Wilson, Bacterial Physiology, p. 362. New York: Academic Press 1951.Google Scholar
  514. Fries, N.: X-Ray induced mutations in the physiology of Ophiostoma. Nature (Lond.) 155, 757 (1945).CrossRefGoogle Scholar
  515. Fromageot, C.: Oxidation of organic sulfur in animals. Adv. Enzymol. 7, 369 (1951).Google Scholar
  516. Fromageot, C.: Desulfhydrase,. Dans: Sumner and Myrbäck: The Enzymes, vol.1, part 2. New York: Academic Press 1951.Google Scholar
  517. Fromageot, C.: The metabolism of sulfur and its relation to general metabolism. Harvey Lect. 1955.Google Scholar
  518. Fromageot, C., u. A. Royer: La présence constante du thiosulfate dans l’urine des animaux et sa signification physiologique. Enzymologia (Den Haag) 11, 361 (1945).Google Scholar
  519. Fromageot, C., E. Wookey u. P. Chaix: Sur la dégradation anaérobique de la cystéine par la désulfurase du foie. Enzymologia (Den Haag) 9, 198 (1940).Google Scholar
  520. Gaarden: Cité par W. Benecke 1933.Google Scholar
  521. Geitler, L., u. A. Pascher: Cyanochlorid-neac, Chlorobaclcvlaceae. Die Süßwasserflora Deutschlands, Österreichs und der Schweiz. Bd. 12, S. 451. Jena 1925.Google Scholar
  522. Gietzen Untersuchungen über marine Thiorhodazeen. Zbl. Bakter. II 83, 183 (1941).Google Scholar
  523. Greengard, H., and J. R. Woolley: Studies on colloïdal sulfur, polysulfide mixture. Absorption and oxidation after oral administration. J. of Biol. Chem. 132, 83 (1940).Google Scholar
  524. Greenstein, J. B., and F. M. Leuthardt: Degradation of cystine peptides by tissues. I. Exocystine desulfurase and dehydropeptidase in rat liver extracts. J. Nat. Canc. Inst. 5, 209 (1944).Google Scholar
  525. Guthrie, J. D.: Availability of sulfate during synthesis of glutathione to potatoes treated with ethylene chlorhydrin. Contrib. Boyce Thompson Inst. 9, 233 (1938).Google Scholar
  526. Happold, F. C., and A. Key: The bacterial purification of gas-works liquors. Biochemic. J. 31, 1323 (1937).Google Scholar
  527. Hockenhull, D. J. D.: The sulfur metabolism of mold fungi. Biochim. et Biophysica Acta 3, 326 (1949).CrossRefGoogle Scholar
  528. Hunt, F. W.: The sulfur deposits of Sicily. Econ. Geol. 10, 543 (1915).CrossRefGoogle Scholar
  529. Issatchenko, B. L.: Sur la fermentation sulfhydrique dans la mer Noire. C. r. Acad. Sci. Paris 178, 2204 (1924).Google Scholar
  530. Jegunov, M.: Cité par Benecke 1933. Zbl. Bakter. II 4, 257 (1898).Google Scholar
  531. Kearney, E. B., and T. P. Singer: The oxidation of cysteinsulfinic and cysteic acid in Proteus vulgaris. Biochim. et Biophysica Acta 11, 270 (1953 a).CrossRefGoogle Scholar
  532. Kearney, E. B., and T. P. Singer: Enzymic transformations of L-cysteine-sulfinic acid. Biochim. et Biophysica Acta 11, 276 (1953 b).CrossRefGoogle Scholar
  533. Kluyver, A. J., and C. B. van Niel: Prospects for a natural system of classification of bacteria. Zbl. Bakter. II 94, 369 (1936).Google Scholar
  534. Knaysi, G.: A cytological and microchemical study of Thiobacillus thiooxidans. J. Bacter. 46, 451 (1943).Google Scholar
  535. Kühr, C. A. H., v. Wolzagen and I. S. van der Vlugt: Cité par Butlin et al. 1949. The graphitization of cast iron as an electrochemical process in anaerobic soils. Water 18, 147 (1934).Google Scholar
  536. Lampen, J. O., R. R. Roepke and M. J. Jones: Studies on the sulfur metabolism of Escherichia coli. III. Mutant strains of E. coli unable to utilize sulfate for their complete sulfur requirements. Arch, of Biochem. 13, 55 (1947).Google Scholar
  537. Larsen, H.: On the culture and general physiology of the green sulfur bacteria. J. Bacter. 64, 187 (1952).Google Scholar
  538. Larsen, H.: On the microbiology and biochemistry of the photosynthetic green sulfur bacteria. Kongl. norske Vidensk. Selsk., Skr. 1953, Nr 1.Google Scholar
  539. Larsen, H., C. S. Yocum and C. B. van Niel: On the energetics of the photosynthesis in green sulfur bacteria. J. Gen. Physiol. 36, 161 (1952).PubMedCrossRefGoogle Scholar
  540. Latimer, W. H.: Oxidation potentials. New York: Prentice Hall 1952.Google Scholar
  541. Lefevre, C., et M. Rangier: Contribution à l’étude de la répartition du soufre organique urinaire. Bull. Soc. Chim. biol. Paris 19, 1697, 1711 (1937).Google Scholar
  542. Le Page, G. A.: The biochemistry of autotrophic bacteria. The metabolism of Thiobacillus thiooxidans in the absence of oxidizable sulphur. Arch, of Biochem. 1, 255 (1942).Google Scholar
  543. Le Page, G. A., and W. W. Umbreit: Phosphorylated carbohydrates esters in autotrophic bacteria. J. of Biol. Chem. 147, 263 (1943).Google Scholar
  544. Lieske, R.: Untersuchungen über die Physiologie denitrifizierender Schwefelbacterien. Ber. dtsch. bot. Ges. 36, 12 (1912).Google Scholar
  545. Massart, J.: Rec. Inst. Bot. Univ. Bruxelles 5, 251 (1902).Google Scholar
  546. Medes, G.: Metabolism of sulphur. VIII. Oxidation of the sulphur-containing amino-acids by enzymes from the liver of the albino rat. Biochemie. J. 33, 1559 (1939).Google Scholar
  547. Medes, G., and N. Floyd: Metabolism of sulphur. Cysteic acid. Biochemie. J. 36, 836 (1942).Google Scholar
  548. Molisch, H.: Die Purpurbakterien. Jena: Gustav Fischer 1907.Google Scholar
  549. Nadson, G. A.: Mikrobiologische Studien. I. Chlorobium limicola Nads., ein grüner Mikroorganismus mit inaktivem Chlorophyll. Bull. Imp. Bot. Garden St. Petersburg 12, 55 (1912).Google Scholar
  550. Nathansohn, A.: Über eine neue Gruppe von Schwefelbakterien und ihren Stoffwechsel. Mitt. zool. Stat. Neapel 15, 655 (1902).Google Scholar
  551. Niel, C. B. van: On the morphology and physiology of the purple and green sulfur bacteria. Arch. Microbiol. 3, 1 (1931).Google Scholar
  552. Niel, C. B. van: The culture, general physiology, morphology and classification of the non-sulfur purple and brown bacteria. Bacter. Rev. 8, 1 (1944).Google Scholar
  553. Parker, C. C.: Mechanics of corrosion of concrete sewers by hydrogen sulphide. Sewage Industr. Wastes 23, 1477 (1951).Google Scholar
  554. Parker, C. D.: The corrosion of concrete. I. The isolation of a species of bacterium associated with the corrosion of concrete exposed to atmospheres containing hydrogen sulphide. Austral. J. Exper. Biol. a. Med. Sci. 23, 81–90 (1945).CrossRefGoogle Scholar
  555. Parks, C. S., and H. M. Huffman: The free energies of some organic compounds. New York: Chem. Catalog. Co. 1932.Google Scholar
  556. Pauling, L.: General Chemistry. San Francisco: Freeman 1947.Google Scholar
  557. Phinney, B. O.: Genetics 33, 624 (1948).PubMedGoogle Scholar
  558. Pirie, N. W.: The formation of sulphate from cysteine and methionine by tissues in vitro. Biochemic. J. 28, 305 (1934).Google Scholar
  559. Pollock, M. R., and R. Knox: Bacterial reduction of tetrathionate. Biochemie. J. 37, 476 (1943).Google Scholar
  560. Prigogine, I., et R. Defay: Thermodynamique chimique, Tome I. Liège: Desoer 1944.Google Scholar
  561. Rittenberg, S. C.: Cité par Butlin 1949, Studies on marine sulfate-reducing bacteria. Thesis Univ. California 1941.Google Scholar
  562. Roberts, R. B., P. H. Abelson, D. B. Cowie, E. T. Bolton and R. J. Britten: Studies of biosynthesis in Escherichia coli. Washington, D.C., Carnegie Institution of Washington 1955.Google Scholar
  563. Stahl, W. H., B. McQue, G. R. Mandel and R. G. U. Sia: Studies on the microbiological degradation of wool. I. Sulfur metabolism. Arch. of Biochem. 20, 422 (1949).Google Scholar
  564. Starkey, R. L.: Concerning the physiology of Thiobacillus thiooxidans an autotrophic bacterium oxidizing, sulphur under acid conditions. J. Bacter. 10, 135, 165 (1915).Google Scholar
  565. Starkey, R. L.: Isolation of some bacteria which oxidize thiosulphate. Soil Sci. 39, 197 (1935 a).CrossRefGoogle Scholar
  566. Starkey, R. L.: Products of the oxidation of thiosulphate in mineral media. J. Gen. Physiol. 18, 325 (1935b).PubMedCrossRefGoogle Scholar
  567. Starkey, R. L.: Spore formation by the sulphate-reducing vibrio. Kon. Ned. Akad. Wetensch. 41, 422 (1938).Google Scholar
  568. Starkey, R. L., and K. M. Wight: Anaerobic corrosion of iron in soil. New York: American Gas Association 1945.Google Scholar
  569. Sverdrup, H. U., M.W. Johnson and R. H. Fleming: The oceans. New York: Prentice-Hall 1946.Google Scholar
  570. Tarr, H. L. A.: The anaerobic decomposition of 1-cystine by washed cells of Proteus vulgaris. Biochemie. J. 27, 759 (1933 a).Google Scholar
  571. Tarr, H. L. A.: The enzymic formation of hydrogen sulphide by certain heterotrophic bacteria. Biochemie. J. 27, 1869 (1933); 28, 192 (1934).Google Scholar
  572. Tarver, H. L. A., and C. L. A. Schmidt: The conversion of methionine to cystine. Experiments with radioactive sulfur. J. of Biol. Chem. 130, 67 (1939).Google Scholar
  573. Tatum, E. L.: Amino-acid metabolism in mutant strains of microorganisms. Federat. Proc. 8, 511 (1949).Google Scholar
  574. Taylor, C. B., and G. H. Hutchinson: Corrosion of concrete caused by sulphur-oxidizing bacteria. J. Soc. Chem. Industr. (Lond.) 66, 54 (1947).CrossRefGoogle Scholar
  575. Trautwein, K.: Beiträge zur Physiologie und Morphologie der Thionsäurebakterien (Omelianski). Zbl. Bakter. II 53, 513 (1921).Google Scholar
  576. Trautwein, K.: Die Physiologie und Morphologie der fakultativ autotrophen Thionsäurebakterien unter heterotrophen Ernährungsbedingungen. Zbl. Bakter. II 61, 1 (1924).Google Scholar
  577. Umbreit, W. W., H.R. Vogel and K. G. Vogler: The significance of fat in sulphur oxidation by Thiobacillus thiooxidans. J. Bacter. 43, 141 (1942).Google Scholar
  578. Uphof: 1927. Cité par Benecke 1933.Google Scholar
  579. Virtue, R. W., and M. E. Doster-Virtue: Studies on the production of taurocholic acid in the dog. J. of Biol. Chem. 127, 431 (1932).Google Scholar
  580. Vogler, K. G.: Studies on the metabolism of autotrophic bacteria. J. Gen. Physiol. 26, 103, 109 (1942).PubMedCrossRefGoogle Scholar
  581. Vogler, K. G., and W. W. Umbreit: Metabolism of autotrophic bacteria. J. Gen. Physiol. 26, 157, 159 (1942).Google Scholar
  582. Waksman, S.A., and J. S. Joffe: Microorganisms concerned in the oxidation of the soil. II. Thiobacillus thiooxidans a new sulphur-oxidizing organism isolated from soil. J. Bacter. 7, 239 (1922).Google Scholar
  583. Waksman, S. A., and R. L. Starkey: On the growth and respiration of sulphur oxidizing bacteria. J. Gen. Physiol. 5, 285 (1922).CrossRefGoogle Scholar
  584. Warburg, O., and D. Burk: The maximum efficiency of photosynthesis. Arch. of Biochem. 25, 410 (1950).Google Scholar
  585. Warming: Cité par Benecke 1933.Google Scholar
  586. Winogradsky, S.: Über Schwefelbacterien. Beiträge zur Morphologie und Physiologie der Bakterien. Leipzig 1888.Google Scholar
  587. Winogradsky, S.: Recherches sur les organismes de la nitrification. Ann. Inst. Pasteur 4, 213 (1890).Google Scholar
  588. Microbiologie du sol. Paris: Masson & Cie. 1949.Google Scholar
  589. Wohlgemuth, J.: Über die Herkunft der schwefelhaltigen Stoffwechselprodukte im tierischen Organismus. Z. physiol. Chem. 43, 469 (1905).CrossRefGoogle Scholar
  590. Zörkendörfer, W.: Über die Sulfit- und Sulfidbindung aus Sulfaten im Darm und ihr Anteil an der abführenden Wirkung schwefelsaurer Salze. Arch. exper. Path. u. Pharmacol. 161, 437 (1931).CrossRefGoogle Scholar
  591. Zörkendörfer, W.: Über die Ausscheidung des Thiosulfates und seine Bestimmung im Harn. Biochem. Z. 278, 191 (1935).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1958

Authors and Affiliations

There are no affiliations available

Personalised recommendations