Advertisement

Chern Character

Chapter
  • 389 Downloads
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 301)

Abstract

One of the main themes of differential topology is: characteristic classes. The point is to define invariants of a topological or differentiable situation and then to calculate them. Many interesting invariants lie in the so-called K-groups. In the case of manifolds, for instance, these invariants are computed via the “Chern character”, which maps K-theory to the de Rham cohomology theory.

Keywords

Vector Bundle Chem Character Cyclic Module Torsion Free Group Grothendieck Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical Comments on Chapter 8

  1. Milnor, J., Stasheff, J.D., Characteristic classes, Annals of Math. Studies 76, Princeton University Press, 1974.Google Scholar
  2. Karoubi, M., Homologie cyclique et K-théorie, Astérisque 149, 1987Google Scholar
  3. Jones, J.D.S., Cyclic homology and equivariant homology, Invent. Math. 87 (1987), 403–423. 88f: 18016CrossRefGoogle Scholar
  4. Dennis, K., In search of a new homology theory, manuscript, 1976, never published. Dennis, K., Igusa, K., Hochschild homology and the second obstruction for pseudo-isotopy, Springer Lect. Notes in Math. 966 (1982), 7–58. 84m: 18014MathSciNetGoogle Scholar
  5. Quillen, D., Cyclic cohomology and algebra extensions. K-theory 3 (1989), 205–246.Google Scholar
  6. Kassel, C., Quand l’homologie cyclique périodique n’est pas la limite projective de l’homologie cyclique, K-theory 2 (1989a), 617–621MathSciNetzbMATHCrossRefGoogle Scholar
  7. Wang, X., Bivariant Chern character I, Proc. Symp. Pure Math. 51 (1990), 355–360.CrossRefGoogle Scholar
  8. Connes, A., Karoubi, M., Caractère multiplicatif d’un module de Fredholm, C. R. Acad. Sci. Paris Sér. A-B 299 (1984), 963–968, et K-theory 2 (1988), 431463. 90c:58174Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  1. 1.Institut de Recherche Mathématique AvancéeCentre National de la Recherche ScientifiqueStrasbourgFrance

Personalised recommendations