Advertisement

Variations on Cyclic Homology

Chapter
  • 388 Downloads
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 301)

Abstract

There are several ways of modifying cyclic homology: by altering the cyclic bicomplex, by putting up other groups than the cyclic groups or by enlarging the category of algebras.

Keywords

Exact Sequence Cyclic Module Cyclic Homology Hochschild Cohomology Hochschild Homology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical Comments on Chapter 5

  1. Avramov, L., Halperin, S., On the vanishing of cotangent cohomology, Comment. Math. Helv. 62 (1987), 169–184.MathSciNetzbMATHCrossRefGoogle Scholar
  2. Block, J.L., Cyclic homology of filtered algebras, K-theory 1 (1987), 515–518.MathSciNetzbMATHCrossRefGoogle Scholar
  3. Block, J.L., Cyclic homology of filtered algebras, K-theory 1 (1987), 515–518.Google Scholar
  4. Brown, R., Loday, J.-L., Van Kampen theorems for diagrams of spaces, Topology 26 (1987), 311–335MathSciNetzbMATHCrossRefGoogle Scholar
  5. Krasauskas, R.L., Skew simplicial groups, Litovsk. Mat. Sb. 27 (1987) No. 1, 89–99MathSciNetGoogle Scholar
  6. Lodder, J.M., Dihedral homology and the free loop space, Proc. London Math. Soc. 60 (1990), 201–224.zbMATHGoogle Scholar
  7. Dunn, G., Dihedral and quaternionic homology and mapping spaces, K-theory 3 (1989), 141–161.MathSciNetzbMATHCrossRefGoogle Scholar
  8. Wolters, P., Generalized Arf invariants and reduced power operations in cyclic homology, thesis, Nijmegen, 1990.Google Scholar
  9. ViguÉ-Poirrier, M., Burghelea, D., A model for cyclic homology and algebraic K-theory of 1-connected topological spaces, J. Diff. Geom. 22 (1985), 243–253.Google Scholar
  10. Goodwillie, T.G., Relative algebraic K-theory and cyclic homology, Ann. Of Math. 124 (1986), 347–402. 88b: 18008Google Scholar
  11. Brylinski, J.-L., Getzler, E., The homology of algebras of pseudo-differential symbols and the non-commutative residue, K-theory 1 (1987), 385–403MathSciNetzbMATHCrossRefGoogle Scholar
  12. Geller, S., Reid, L., Weibel, C., The cyclic homology and K-theory of curves, J. Reine Ang. Math. 393 (1989), 39–90MathSciNetzbMATHGoogle Scholar
  13. Feigin, B.L., Tsygan, B.L., Cyclic homology of algebras with quadratic relations, universal enveloping algebras and group algebras, in “K-theory, Arithmetic and Geometry”, Springer Lect. Notes in Math. 1289 (1987), 210–239MathSciNetCrossRefGoogle Scholar
  14. Kassel, C., Cyclic homology, comodules and mixed complexes, J. of Algebra 107 (1987), 195–216.MathSciNetzbMATHCrossRefGoogle Scholar
  15. Dwyer, W.G., Kan, D.M., Normalizing the cyclic modules of Connes, Comment. Math. Helv. 60 (1985) 582–600.MathSciNetzbMATHCrossRefGoogle Scholar
  16. Connes, A., Gromov, M., Moscovici, H. Conjectures de Novikov et fibrés presque plats, C. R. Acad. Sci. Paris Sér. A-B 310 (1990), 273–277. 91e: 57041MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  1. 1.Institut de Recherche Mathématique AvancéeCentre National de la Recherche ScientifiqueStrasbourgFrance

Personalised recommendations