Smooth Algebras and Other Examples

Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 301)


This chapter is devoted to the computation of Hochschild and cyclic homologies of some particular types of algebras: tensor algebras, symmetric algebras, universal enveloping algebras of Lie algebras and, finally, smooth algebras, on which we put some emphasis. One more important example, the case of group algebras, will be treated later, in Sect. 7.4. It is also shown in this chapter that Hochschild and cyclic homology are related to many other theories such as the homology of Lie algebras, André-Quillen homology of commutative algebras, and Deligne cohomology.


Exact Sequence Spectral Sequence Commutative Algebra Polynomial Algebra Free Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical Comments on Chapter 3

  1. Maclane, S., Homology, Grundlehren Math. Wiss. 114, Springer, 1963.Google Scholar
  2. Cartan, H., Eilenberg, S., Homological algebra, Princeton University Press, 1956.Google Scholar
  3. Loday, J.-L., Quillen, D., Cyclic homology and the Lie algebra homology of matrices, Comment. Math. Helvetici 59 (1984), 565–591. 86i: 17009CrossRefGoogle Scholar
  4. Hsiang, W.-C., Staffeldt, R.E., A model for computing rational algebraic Ktheory of simply connected spaces, Invent. Math. 68 (1982), 227–239. 84h: 18015MathSciNetCrossRefGoogle Scholar
  5. Kassel, C., L’homologie cyclique des algèbres enveloppantes, Invent. Math. 91 (1988), 221–251. 89e: 17015MathSciNetCrossRefGoogle Scholar
  6. Feigin, B.L., Tsygan, B.L., Additive K-theory, in “K-theory, Arithmetic and Geometry”, Springer Lect. Notes in Math. 1289 (1987), 97–209. 89a: 18017Google Scholar
  7. Connes, A., Non-commutative differential geometry, Publ. Math. Ihes 62 (1985) 257–360. 87i: 58162MathSciNetGoogle Scholar
  8. Feigin, B.L., Tsygan, B.L., Additive K-theory and crystalline cohomology (in russian), Funkt. Anal. i. Pril. 19 (2) (1985), 52–62 88e: 18008MathSciNetGoogle Scholar
  9. M. André, Homologie des algèbres commutatives, Springer Verlag, 1974.Google Scholar
  10. D. Quillen, On the (co)-homology of commutative rings, Proc. Symp. Pure Math., 17 (1970) 65–87.MathSciNetCrossRefGoogle Scholar
  11. Harrison, D.K., Commutative algebras and cohomology, Trans. Ams 104 (1962), 191–204.zbMATHCrossRefGoogle Scholar
  12. Avramov, L., Halperin, S., On the vanishing of cotangent cohomology, Comment. Math. Helv. 62 (1987), 169–184.MathSciNetzbMATHCrossRefGoogle Scholar
  13. Gros, M., Quelques résultats sur l’homologie cyclique des algèbres en caractéristique positive, C. R. Acad. Sci. Paris Sér. A-B 304 (1987), 139–142. 88i: 18015MathSciNetGoogle Scholar
  14. Wodzicki, M., The long exact sequence in cyclic homology associated with an extension of algebras, C. R. Acad. Sci. Paris Sér. A-B 306 (1988), 399–403. 89i: 18012MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  1. 1.Institut de Recherche Mathématique AvancéeCentre National de la Recherche ScientifiqueStrasbourgFrance

Personalised recommendations