Advertisement

Cyclic Homology of Algebras

Chapter
  • 396 Downloads
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 301)

Abstract

There are at least three ways to construct cyclic homology from Hochschild homology. First, in his search for a non-commutative analogue of de Rham homology theory, A. Connes discovered in 1981 the following striking phenomenon:
  • the Hochschild boundary map b is still well-defined when one factors out the module AA ⊗n = A ⊗n+1 by the action of the (signed) cyclic permutation of order n + 1.

Keywords

Exact Sequence Mixed Complex Cyclic Module Cyclic Homology Hochschild Homology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical Comments on Chapter 2

  1. Hsiang, W.-C., Staffeldt, R.E., A model for computing rational algebraic Ktheory of simply connected spaces, Invent. Math. 68 (1982), 227–239MathSciNetzbMATHCrossRefGoogle Scholar
  2. Tsygan, B.L., The homology of matrix Lie algebras over rings and the Hochschild homology (en russe), Uspekhi Mat. Nauk 38 (1983), 217–218–Russ. Math. Survey 38 No. 2 (1983), 198–199Google Scholar
  3. Loday, J.-L., Quillen, D., Homologie cyclique et homologie de l’algèbre de Lie des matrices, C. R. Acad. Sci. Paris Sér. A-B 296 (1983), 295–297MathSciNetzbMATHGoogle Scholar
  4. Connes, A., Cohomologie cyclique et foncteurs Ext°, C. R. Acad. Sci. Paris Sér. A-B 296 (1983), 953–958.MathSciNetzbMATHGoogle Scholar
  5. Mccarthy, R., L’équivalence de Morita et l’homologie cyclique, C. R. Acad. Sci. Paris Sér. A-B 307 (1988), 211–215zbMATHGoogle Scholar
  6. Karoubi, M., Homologie cyclique et K-théorie, Astérisque 149, 1987Google Scholar
  7. Connes, A., Cohomologie cyclique et foncteurs Ext°, C. R. Acad. Sci. Paris Sér. A-B 296 (1983), 953–958.MathSciNetzbMATHGoogle Scholar
  8. [A]
    M. André, Homologie des algèbres commutatives, Springer Verlag, 1974.Google Scholar
  9. Burghelea, D., Cyclic homology and the algebraic K-theory of spaces I, Proc. Summer Inst. on Alg. K-theory, Boulder Colorado 1983, Contemp. Math. 55, I (1986), 89–115Google Scholar
  10. Kassel, C., Cyclic homology, comodules and mixed complexes, J. of Algebra 107 (1987), 195–216.MathSciNetzbMATHCrossRefGoogle Scholar
  11. Karoubi, M., Homologie cyclique et régulateurs en K-théorie algébrique, C. R. Acad. Sci. Paris Sér. A-B 297 (1983), 557–560MathSciNetzbMATHGoogle Scholar
  12. Karoubi, M., Homologie cyclique et K-théorie algébrique I et II, C. R. Acad. Sci. Paris Sér. A-B 297 (1983), 447–450 et 513–516Google Scholar
  13. Karoubi, M., Homologie cyclique et K-théorie, Astérisque 149, 1987Google Scholar
  14. Quillen, D., On the (co)-homology of commutative rings, Proc. Symp. Pure Math. 17 (1970), 65–87.MathSciNetCrossRefGoogle Scholar
  15. Feigin, B.L., Tsygan, B.L., Additive K-theory and crystalline cohomology (in russian), Funkt. Anal. i. Pril. 19 (2) (1985), 52–62Google Scholar
  16. Quillen, D., Algebra cochains and cyclic cohomology, Publ. Math. Ihes 68 (1988) 139–174. 90j: 18008MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  1. 1.Institut de Recherche Mathématique AvancéeCentre National de la Recherche ScientifiqueStrasbourgFrance

Personalised recommendations