• Bernhard Korte
  • Jens Vygen
Part of the Algorithms and Combinatorics book series (AC, volume 21)


Graphs are a fundamental combinatorial structure used throughout this book. In this chapter we not only review the standard definitions and notation, but also prove some basic theorems and mention some fundamental algorithms.


Undirected Graph Topological Order Adjacency List Planar Embedding Acyclic Digraph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


General Literature

  1. Berge, C. [1985]: Graphs. 2nd revised edition. Elsevier, Amsterdam 1985MATHGoogle Scholar
  2. Bollobás, B. [1998]: Modern Graph Theory. Springer, New York 1998MATHCrossRefGoogle Scholar
  3. Bondy, J.A. [1995]: Basic graph theory: paths and circuits. In: Handbook of Combinatorics; Vol. 1 (R.L. Graham, M. Grötschel, L. Lovász, eds.), Elsevier, Amsterdam 1995Google Scholar
  4. Bondy, J.A., and Murty, U.S.R. [1976]: Graph Theory with Applications. MacMillan, London 1976MATHGoogle Scholar
  5. Diestel, R. [1997]: Graph Theory. Springer, New York 1997MATHGoogle Scholar
  6. Wilson, R.J. [1972]: Introduction to Graph Theory. Oliver and Boyd, Edinburgh 1972 (3rd edition: Longman, Harlow 1985)MATHGoogle Scholar

Cited References

  1. Aoshima, K., and Iri, M. [1977]: Comments on F. Hadlock’s paper: finding a maximum cut of a Planar graph in polynomial time. SIAM Journal on Computing 6 (1977), 86–87MathSciNetMATHCrossRefGoogle Scholar
  2. Camion, P. [1959]: Chemins et circuits hamiltoniens des graphes complets. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences (Paris) 249 (1959), 2151–2152MathSciNetMATHGoogle Scholar
  3. Camion, P. [1968]: Modulaires unimodulaires. Journal of Combinatorial Theory A 4 (1968), 301–362MathSciNetCrossRefGoogle Scholar
  4. Dirac, G.A. [1952]: Some theorems on abstract graphs. Proceedings of the London Mathematical Society 2 (1952), 69–81MathSciNetMATHCrossRefGoogle Scholar
  5. Edmonds, J., and Giles, R. [1977]: A min-max relation for submodular functions on graphs. In: Studies in Integer Programming; Annals of Discrete Mathematics 1 (P.L. Hammer, E.L. Johnson, B.H. Korte, G.L. Nemhauser, eds.), North-Holland, Amsterdam 1977, pp. 185–204CrossRefGoogle Scholar
  6. Euler, L. [1736]: Solutio Problematis ad Geometriam Situs Pertinentis. Commentarii Academiae Petropolitanae 8 (1736), 128–140Google Scholar
  7. Euler, L. [1758]: Demonstratio nonnullarum insignium proprietatum quibus solida hedris planis inclusa sunt praedita. Novi Commentarii Academiae Petropolitanae 4 (1758), 140–160Google Scholar
  8. Hierholzer, C. [1873]: Über die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren. Mathematische Annalen 6 (1873), 30–32MathSciNetMATHCrossRefGoogle Scholar
  9. Hopcroft, J.E., and Tarjan, R.E. [1974]: Efficient planarity testing. Journal of the ACM 21 (1974), 549–568MathSciNetMATHCrossRefGoogle Scholar
  10. Kahn, A.B. [1962]: Topological sorting of large networks. Communications of the ACM 5 (1962), 558–562MATHCrossRefGoogle Scholar
  11. Knuth, D.E. [1968]: The Art of Computer Programming; Vol. 1; Fundamental Algorithms. Addison-Wesley, Reading 1968 (third edition: 1997)MATHGoogle Scholar
  12. König, D. [1916]: Über Graphen und Ihre Anwendung auf Determinantentheorie und Mengenlehre. Mathematische Annalen 77 (1916), 453–465MathSciNetMATHCrossRefGoogle Scholar
  13. König, D. [1936]: Theorie der endlichen und unendlichen Graphen. Chelsea Publishing Co., Leipzig 1936, reprint New York 1950Google Scholar
  14. Kuratowski, K. [1930]: Sur le problème des courbes gauches en topologie. Fundamenta Mathematicae 15 (1930), 271–283MATHGoogle Scholar
  15. Minty, G.J. [1960]: Monotone networks. Proceedings of the Royal Society of London A 257 (1960), 194–212MathSciNetGoogle Scholar
  16. Moore, E.F. [1959]: The shortest path through a maze. Proceedings of the International Symposium on the Theory of Switching; Part II. Harvard University Press 1959, pp. 285-292Google Scholar
  17. Rédei, L. [1934]: Ein kombinatorischer Satz. Acta Litt. Szeged 7 (1934), 39–43Google Scholar
  18. Robbins, H.E. [1939]: A theorem on graphs with an application to a problem of traffic control. American Mathematical Monthly 46 (1939), 281–283MathSciNetCrossRefGoogle Scholar
  19. Robertson, N., and Seymour, P.D. [1986]: Graph minors II: algorithmic aspects of tree-width. Journal of Algorithms 7 (1986), 309–322MathSciNetMATHCrossRefGoogle Scholar
  20. Tarjan, R.E. [1972]: Depth first search and linear graph algorithms. SIAM Journal on Computing 1 (1972), 146–160MathSciNetMATHCrossRefGoogle Scholar
  21. Thomassen, C. [1980]: Planarity and duality of finite and infinite graphs. Journal of Combinatorial Theory B 29 (1980), 244–271MathSciNetCrossRefGoogle Scholar
  22. Thomassen, C. [1981]: Kuratowski’s theorem. Journal of Graph Theory 5 (1981), 225–241MathSciNetMATHCrossRefGoogle Scholar
  23. Tutte, W.T. [1961]: A theory of 3-connected graphs. Konink. Nederl. Akad. Wetensch. Proc. A 64 (1961), 441–455MathSciNetGoogle Scholar
  24. Wagner, K. [1937]: Über eine Eigenschaft der ebenen Komplexe. Mathematische Annalen 114 (1937), 570–590MathSciNetCrossRefGoogle Scholar
  25. Whitney, H. [1932]: Non-separable and planar graphs. Transactions of the American Mathematical Society 34 (1932), 339–362MathSciNetCrossRefGoogle Scholar
  26. Whitney, H. [1933]: Planar graphs. Fundamenta Mathematicae 21 (1933), 73–84Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Bernhard Korte
    • 1
  • Jens Vygen
    • 1
  1. 1.Research Institute for Discrete MathematicsUniversity of BonnBonnGermany

Personalised recommendations