Advertisement

Integer Programming

  • Bernhard Korte
  • Jens Vygen
Part of the Algorithms and Combinatorics book series (AC, volume 21)

Abstract

In this chapter, we consider linear programs with integrality constraints:

Keywords

Integer Program Lagrangean Relaxation Integral Vector Polyhedral Cone Integral Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General Literature:

  1. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., and Schrijver, A. [ 1998 ]: Combinatorial Optimization. Wiley, New York 1998, Chapter 6MATHGoogle Scholar
  2. Nemhauser, G.L., and Wolsey, L.A. [ 1988 ]: Integer and Combinatorial Optimization. Wiley, New York 1988MATHGoogle Scholar
  3. Schrijver, A. [ 1986 ]: Theory of Linear and Integer Programming. Wiley, Chichester 1986MATHGoogle Scholar
  4. Wolsey, L.A. [ 1998 ]: Integer Programming. Wiley, New York 1998MATHGoogle Scholar

Cited References:

  1. Boyd, E.A. [ 1997 ]: A fully polynomial epsilon approximation cutting plane algorithm for solving combinatorial linear programs containing a sufficiently large ball. Operations Research Letters 20 (1997), 59–63MathSciNetMATHCrossRefGoogle Scholar
  2. Chvâtal, V. [ 1973 ]: Edmonds’ polytopes and a hierarchy of combinatorial problems. Discrete Mathematics 4 (1973), 305–337MathSciNetMATHCrossRefGoogle Scholar
  3. Cook, W. [ 1983 ]: Operations that preserve total dual integrality. OR Letters 2 (1983), 31–35MATHGoogle Scholar
  4. Cook, W., Fonlupt, J., and Schrijver, A. [ 1986 ]: An integer analogue of Carathéodory’s theorem. Journal of Combinatorial Theory B 40 (1986), 63–70MathSciNetMATHCrossRefGoogle Scholar
  5. Cook, W., Gerards, A., Schrijver, A., and Tardos, E. [ 1986 ]: Sensitivity theorems in integer linear programming. Mathematical Programming 34 (1986), 251–264MathSciNetMATHCrossRefGoogle Scholar
  6. Dantzig, G., Fulkerson, R., and Johnson, S. [ 1954 ]: Solution of a large-scale traveling-salesman problem. Operations Research 2 (1954), 393–410MathSciNetCrossRefGoogle Scholar
  7. Edmonds, J., and Giles, R. [1977]: A min-max relation for submodular functions on graphs. In: Studies in Integer Programming; Annals of Discrete Mathematics 1 ( P.L. Hammer, E.L. Johnson, B.H. Korte, G.L. Nemhauser, eds.), North-Holland, Amsterdam 1977, pp. 185–204CrossRefGoogle Scholar
  8. Eisenbrand, F., and Schulz, A.S. [1999]: Bounds on the Chvâtal rank of polytopes in the 0/1-cube. Proceedings of the 7th Conference on Integer Programming and Combinatorial Optimization; LNCS 1610 (G. Cornuéjols, R.E. Burkard, G.J. Woeginger, eds.), Springer, Berlin 1999, pp. 137–150Google Scholar
  9. Fulkerson, D.R. [ 1971 ]: Blocking and anti-blocking pairs of polyhedra. Mathematical Programming 1 (1971), 168–194MathSciNetMATHCrossRefGoogle Scholar
  10. Geoffrion, A.M. [ 1974 ]: Lagrangean relaxation for integer programming. Mathematical Programming Study 2 (1974), 82–114MathSciNetCrossRefGoogle Scholar
  11. Giles, F.R., and Pulleyblank, W.R. [ 1979 ]: Total dual integrality and integer polyhedra. Linear Algebra and Its Applications 25 (1979), 191–196MathSciNetMATHCrossRefGoogle Scholar
  12. Ghouila-Houri, A. [ 1962 ]: Caractérisation des matrices totalement unimodulaires. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences (Paris) 254 (1962), 1192–1194MathSciNetMATHGoogle Scholar
  13. Goemans, M.X., and Skutella, M. [ 2000 ]: Cooperative facility location games. Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (2000), 76–85Google Scholar
  14. Goffin, J.L. [ 1977 ]: On convergence rates of subgradient optimization methods. Mathematical Programming 13 (1977), 329–347MathSciNetMATHCrossRefGoogle Scholar
  15. Gomory, R.E. [ 1958 ]: Outline of an algorithm for integer solutions to linear programs. Bulletin of the American Mathematical Society 64 (1958), 275–278MathSciNetMATHCrossRefGoogle Scholar
  16. Gomory, R.E. [1963]: An algorithm for integer solutions of linear programs. In: Recent Advances in Mathematical Programming ( R.L. Graves, P. Wolfe, eds.), McGraw-Hill, New York, 1963, pp. 269–302Google Scholar
  17. Graver, J.E. [ 1975 ]: On the foundations of linear and integer programming I. Mathematical Programming 9 (1975), 207–226MathSciNetMATHCrossRefGoogle Scholar
  18. Harvey, W. [ 1999 ]: Computing two-dimensional integer hulls. SIAM Journal on Computing 28 (1999), 2285–2299MathSciNetMATHCrossRefGoogle Scholar
  19. Hoffman, A.J. [ 1974 ]: A generalization of max flow-min cut. Mathematical Programming 6 (1974), 352–359MathSciNetMATHCrossRefGoogle Scholar
  20. Hoffman, A.J., and Kruskal, J.B. [1956]: Integral boundary points of convex polyhedra. In: Linear Inequalities and Related Systems; Annals of Mathematical Study 38 ( H.W. Kuhn, A.W. Tucker, eds.) Princeton University Press, Princeton 1956, 223–246Google Scholar
  21. Meyer, R.R. [ 1974 ]: On the existence of optimal solutions to integer and mixed-integer programming problems. Mathematical Programming 7 (1974), 223–235MathSciNetMATHCrossRefGoogle Scholar
  22. Polyak, B.T. [ 1967 ]: A general method for solving external problems. Doklady Akademii Nauk SSSR 174 (1967), 33–36 [in Russian]. English translation: Soviet Mathematics Doklady 8 (1967), 593–597MATHGoogle Scholar
  23. Schrijver, A. [1980]: On cutting planes. In: Combinatorics 79; Part II; Annals of Discrete Mathematics 9 ( M. Deza, I.G. Rosenberg, eds.), North-Holland, Amsterdam 1980, pp. 291–296Google Scholar
  24. Schrijver, A. [ 1981 ]: On total dual integrality. Linear Algebra and its Applications 38 (1981), 27–32MathSciNetMATHCrossRefGoogle Scholar
  25. Schrijver, A. [ 1983 ]: Packing and covering of crossing families of cuts. Journal of Combinatorial Theory B 35 (1983), 104–128MathSciNetMATHGoogle Scholar
  26. Seymour, P.D. [ 1980 ]: Decomposition of regular matroids. Journal of Combinatorial Theory B 28 (1980), 305–359MathSciNetMATHCrossRefGoogle Scholar
  27. Veinott, A.F., Jr., and Dantzig, G.B. [ 1968 ]. Integral extreme points. SIAM Review 10 (1968), 371–372MathSciNetMATHCrossRefGoogle Scholar
  28. Wolsey, L.A. [ 1981 ]: The b-hull of an integer program. Discrete Applied Mathematics 3 (1981), 193–201MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Bernhard Korte
    • 1
  • Jens Vygen
    • 1
  1. 1.Research Institute for Discrete MathematicsUniversity of BonnBonnGermany

Personalised recommendations