Approximation Algorithms

  • Bernhard Korte
  • Jens Vygen
Part of the Algorithms and Combinatorics book series (AC, volume 21)

Abstract

In this chapter we introduce the important concept of approximation algorithms. So far we have dealt mostly with polynomially solvable problems. In the remaining chapters we shall indicate some strategies to cope with NP-hard combinatorial optimization problems. Here approximation algorithms must be mentioned in the first place.

Keywords

Hull Sudan Berman Guaran 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General Literature

  1. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M. [ 1999 ]: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer, Berlin 1999Google Scholar
  2. Garey, M.R., and Johnson, D.S. [ 1979 ]: Computers and Intractability; A Guide to the Theory of NP-Completeness. Freeman, San Francisco 1979, Chapter 4MATHGoogle Scholar
  3. Hochbaum, D.S. [ 1996 ]: Approximation Algorithms for NP-Hard Problems. PWS, Boston, 1996MATHGoogle Scholar
  4. Horowitz, E., and Salmi, S. [ 1978 ]: Fundamentals of Computer Algorithms. Computer Science Press, Potomac 1978, Chapter 12MATHGoogle Scholar
  5. Shmoys, D.B. [ 1995 ]: Computing near-optimal solutions to combinatorial optimization problems. In: Combinatorial Optimization; DIMACS Series in Discrete Mathematics and Theoretical Computer Science 20 ( W. Cook, L. Lovâsz, P. Seymour, eds.), AMS, Providence 1995Google Scholar
  6. Papadimitriou, C.H. [ 1994 ]: Computational Complexity, Addison-Wesley, Reading 1994, Chapter 13MATHGoogle Scholar
  7. Vazirani, V.V. [ 2000 ]: Approximation Algorithms. Springer, forthcomingGoogle Scholar

Cited References

  1. Ajtai, M. [ 1987 ]: Recursive construction for 3-regular expanders. Proceedings of the 28th Annual IEEE Symposium on Foundations of Computer Science (1987), 295–304Google Scholar
  2. Appel, K., and Haken, W. [ 1977 ]: Every planar map is four colorable; Part I; Discharging. Illinois Journal of Mathematics 21 (1977), 429–490MathSciNetMATHGoogle Scholar
  3. Appel, K., Haken, W., and Koch, J. [ 1977 ]: Every planar map is four colorable; Part II; Reducibility. Illinois Journal of Mathematics 21 (1977), 491–567MathSciNetMATHGoogle Scholar
  4. Arora, S. [ 1994 ]: Probabilistic checking of proofs and the hardness of approximation problems, Ph.D. thesis, U.C. Berkeley, 1994Google Scholar
  5. Arora, S., Lund, C., Motwani, R., Sudan, M., and Szegedy, M. [ 1992 ]: Proof verification and the intractability of approximation problems. Proceedings of the 33rd Annual IEEE Symposium on Foundations of Computer Science (1992), 14–23Google Scholar
  6. Arora, S., and Safra, S. [1992]: Probabilistic checking of proofs. Journal of the ACM 45 (1998), 70–122. Preliminary version: 33rd FOCS (1992), 2–13Google Scholar
  7. Asano, T., and Williamson, D.P. [2000]: Improved approximation algorithms for MAX SAT. Proceedings of the l lth Annual ACM-SIAM Symposium on Discrete Algorithms (2000), 96–105Google Scholar
  8. Bar-Yehuda, R., and Even, S. [ 1981 ]: A linear-time approximation algorithm for the weighted vertex cover problem. Journal of Algorithms 2 (1981), 198–203MathSciNetMATHCrossRefGoogle Scholar
  9. Becker, A., and Geiger, D. [1994]: Approximation algorithms for the loop cutset problem. Proceedings of the 10th Conference on Uncertainty in Artificial Intelligence (1994), 60–68Google Scholar
  10. Bellare, M., and Sudan, M. [ 1994 ]: Improved non-approximability results. Proceedings of the 26th Annual ACM Symposium on the Theory of Computing (1994), 184–193Google Scholar
  11. Bellare, M., Goldreich, O., and Sudan, M. [ 1998 ]: Free bits, PCPs and nonapproximability — towards tight results. SIAM Journal on Computing 27 (1998), 804–915MathSciNetMATHCrossRefGoogle Scholar
  12. Berge, C. [1961]: Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind. Wissenschaftliche Zeitschrift, Martin Luther Universität Halle-Wittenberg, Mathematisch-Naturwissenschaftliche Reihe (1961), 114–115Google Scholar
  13. Berge, C. [ 1962 ]: Sur une conjecture realtive au problème des codes optimaux. Communication, 13ème assemblée générale de l’URSI, Tokyo 1962Google Scholar
  14. Berman, P., and Fujito, T. [ 1999 ]: On approximation properties of the independent set problem for low degree graphs. Theory of Computing Systems 32 (1999), 115–132MathSciNetMATHCrossRefGoogle Scholar
  15. Boppana, R., and Halldórsson, M.M. [ 1992 ]: Approximating maximum independent set by excluding subgraphs. BIT 32 (1992), 180–196MathSciNetMATHCrossRefGoogle Scholar
  16. Brooks, R.L. [ 1941 ]: On colouring the nodes of a network. Proceedings of the Cambridge Philosophical Society 37 (1941), 194–197MathSciNetCrossRefGoogle Scholar
  17. Chen, J., Friesen, D.K., and Zheng, H. [1997]: Tight bound on Johnson’s algorithm for max-SAT. Proceedings of the 12th Annual IEEE Conference on Computational Complexity, Ulm, Germany (1997), pp. 274–281Google Scholar
  18. Chvâtal, V. [ 1975 ]: On certain polytopes associated with graphs. Journal of Combinatorial Theory B 18 (1975), 138–154MATHCrossRefGoogle Scholar
  19. Chvâtal, V. [ 1979 ]: A greedy heuristic for the set cover problem. Mathematics of Operations Research 4 (1979), 233–235MathSciNetMATHCrossRefGoogle Scholar
  20. Clementi, A.E.F., and Trevisan, L. [ 1999 ]: Improved non-approximability results for minimum vertex cover with density constraints. Theoretical Computer Science 225 (1999), 113–128MathSciNetMATHCrossRefGoogle Scholar
  21. Erdös, P. [ 1967 ]: On bipartite subgraphs of graphs. Mat. Lapok. 18 (1967), 283–288MathSciNetMATHGoogle Scholar
  22. Feige, U. [ 1998 ]: A threshold of ln n for the approximating set cover. Journal of the ACM 45 (1998), 634–652MathSciNetMATHCrossRefGoogle Scholar
  23. Feige, U., and Goemans, M.X. [ 1995 ]: Approximating the value of two prover proof systems, with applications to MAX 2SAT and MAX DICUT. Proceedings of the 3rd Israel Symposium on Theory of Computing and Systems (1995), 182–189Google Scholar
  24. Feige, U., Goldwasser, S., Lovâsz, L., Safra, S., and Szegedy, M. [ 1991 ]: Approximating clique is almost NP-complete. Proceedings of the 32nd Annual IEEE Symposium on Foundations of Computer Science (1991), 2–12Google Scholar
  25. Femândez-Baca, D., and Lagergren, J. [ 1998 ]: On the approximability of the Steiner tree problem in phylogeny. Discrete Applied Mathematics 88 (1998), 129–145MathSciNetCrossRefGoogle Scholar
  26. Fulkerson, D.R. [ 1972 ]: Anti-blocking polyhedra. Journal of Combinatorial Theory B 12 (1972), 50–71MathSciNetMATHCrossRefGoogle Scholar
  27. Fürer, M., and Raghavachari, B. [ 1994 ]: Approximating the minimum-degree Steiner tree to within one of optimal. Journal of Algorithms 17 (1994), 409–423MathSciNetCrossRefGoogle Scholar
  28. Garey, M.R., and Johnson, D.S. [ 1976 ]: The complexity of near-optimal graph coloring. Journal of the ACM 23 (1976), 43–49MathSciNetMATHCrossRefGoogle Scholar
  29. Garey, M.R., Johnson, D.S., and Stockmeyer, L. [ 1976 ]: Some simplified NP-complete graph problems. Theoretical Computer Science 1 (1976), 237–267MathSciNetMATHCrossRefGoogle Scholar
  30. Goemans, M.X., and Williamson, D.P. [ 1994 ]: New 3/4-approximation algorithms for the maximum satisfiability problem. SIAM Journal on Discrete Mathematics 7 (1994), 656–666MathSciNetMATHCrossRefGoogle Scholar
  31. Goemans, M.X., and Williamson, D.P. [1995]: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming Journal of the ACM 42 (1995), 1115–1145MathSciNetMATHCrossRefGoogle Scholar
  32. Grötschel, M., Lovâsz, L., and Schrijver, A. [ 1988 ]: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin 1988MATHCrossRefGoogle Scholar
  33. Halldórsson, M.M., and Radhakrishnan, J. [ 1997 ]: Greed is good: approximating indepen-dent sets in sparse and bounded degree graphs. Algorithmica 18 (1997), 145–163MathSciNetMATHCrossRefGoogle Scholar
  34. Hstad, J. [ 1996 ]: Clique is hard to approximate within n1-E. Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science (1996), 627–636Google Scholar
  35. Hstad, J. [1997]: Getting optimal in-approximability results. Proceedings of the 29th An-nual ACM Symposium on the Theory of Computing (1997), 1–10Google Scholar
  36. Heawood, P.J. [ 1890 ): Map colour theorem. Quarterly Journal of Pure Mathematics 24 (1890), 332–338Google Scholar
  37. Hochbaum, D.S. [ 1982 ]: Approximation algorithms for the set covering and vertex cover problems. SIAM Journal on Computing 11 (1982), 555–556MathSciNetMATHCrossRefGoogle Scholar
  38. Hochbaum, D.S., and Shmoys, D.B. [ 1985 ]: A best possible heuristic for the k-center problem. Mathematics of Operations Research 10 (1985), 180–184MathSciNetMATHCrossRefGoogle Scholar
  39. Holyer, I. [ 1981 ]: The NP-completeness of edge-coloring. SIAM Journal on Computing 10 (1981), 718–720MathSciNetMATHCrossRefGoogle Scholar
  40. Hougardy, S., Prömel, H.J., and Steger, A. [ 1994 ]: Probabilistically checkable proofs and their consequences for approximation algorithms. Discrete Mathematics 136 (1994), 175223Google Scholar
  41. Hsu, W.L., and Nemhauser, G.L. [ 1979 ]: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1 (1979), 209–216MathSciNetMATHCrossRefGoogle Scholar
  42. Johnson, D.S. [ 1974 ]: Approximation algorithms for combinatorial problems. Journal of Computer and System Sciences 9 (1974), 256–278MathSciNetMATHCrossRefGoogle Scholar
  43. König, D. [ 1916 ]: Uber Graphen and ihre Anwendung auf Determinantentheorie and Mengenlehre. Mathematische Annalen 77 (1916), 453–465MathSciNetMATHCrossRefGoogle Scholar
  44. Lieberherr, K., and Specker, E. [ 1981 ]: Complexity of partial satisfaction. Journal of the ACM 28 (1981), 411–421MathSciNetMATHCrossRefGoogle Scholar
  45. Lovâsz, L. [ 1972 ]: Normal hypergraphs and the perfect graph conjecture. Discrete Mathematics 2 (1972), 253–267MathSciNetMATHCrossRefGoogle Scholar
  46. Lovâsz, L. [ 1975 ]: On the ratio of optimal integral and fractional covers. Discrete Mathematics 13 (1975), 383–390MathSciNetMATHCrossRefGoogle Scholar
  47. Lovâsz, L. [ 1979 ]: On the Shannon capacity of a graph. IEEE Transactions on Information Theory 25 (1979), 1–7MATHCrossRefGoogle Scholar
  48. Lovâsz, L. [1979]: Graph theory and integer programming. In: Discrete Optimization I; Annals of Discrete Mathematics 4 ( P.L. Hammer, E.L. Johnson, B.H. Korte, eds.), North-Holland, Amsterdam 1979, pp. 141–158Google Scholar
  49. Mahajan, S., and Ramesh, H. [ 1999 ]: Derandomizing approximation algorithms based on semidefinite programming. SIAM Journal on Computing 28 (1999), 1641–1663MathSciNetMATHCrossRefGoogle Scholar
  50. Papadimitriou, C.H., and Steiglitz, K. [1982]: Combinatorial Optimization; Algorithms and Complexity. Prentice-Hall, Englewood Cliffs 1982, pp. 406–408Google Scholar
  51. Papadimitriou, C.H., and Yannakakis, M. [ 1991 ]: Optimization, approximation, and com-plexity classes. Journal of Computer and System Sciences 43 (1991), 425–440MathSciNetMATHCrossRefGoogle Scholar
  52. Papadimitriou, C.H., and Yannakakis, M. [ 1993 ]: The traveling salesman problem with distances one and two. Mathematics of Operations Research 18 (1993), 1–12MathSciNetMATHCrossRefGoogle Scholar
  53. Raghavan, P., and Thompson, C.D. [ 1987 ]: Randomized rounding: a technique for provably good algorithms and algorithmic proofs. Combinatorica 7 (1987), 365–374MathSciNetMATHCrossRefGoogle Scholar
  54. Raz, R., and Safra, S. [ 1997 ]: A sub constant error probability low degree test, and a sub constant error probability PCP characterization of NP. Proceedings of the 29th Annual ACM Symposium on the Theory of Computing (1997), 475–484Google Scholar
  55. Robertson, N., Sanders, D.P., Seymour, P., and Thomas, R. [ 1997 ]: The four colour theorem. Journal of Combinatorial Theory B 70 (1997), 2–44MathSciNetMATHCrossRefGoogle Scholar
  56. Robertson, N., Sanders, D.P., Seymour, P., and Thomas, R. [1996]: Efficiently four-coloring planar graphs. Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (1996), 571–575Google Scholar
  57. Slavík, P. [ 1997 ]: A tight analysis of the greedy algorithm for set cover. Journal of Algorithms 25 (1997), 237–254MathSciNetMATHCrossRefGoogle Scholar
  58. Stockmeyer, L.J. [ 1973 ]: Planar 3-colorability is polynomial complete. ACM SIGACT News 5 (1973), 19–25CrossRefGoogle Scholar
  59. Vizing, V.G. [ 1964 ]: On an estimate of the chromatic class of a p-graph. Diskret. Analiz 3 (1964), 23–30 [in Russian]MathSciNetGoogle Scholar
  60. Yannakakis, M. [ 1994 ]: On the approximation of maximum satisfiability. Journal of Algorithms 17 (1994), 475–502MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Bernhard Korte
    • 1
  • Jens Vygen
    • 1
  1. 1.Research Institute for Discrete MathematicsUniversity of BonnBonnGermany

Personalised recommendations