Advertisement

Molecular Forms and Regional Distribution of Cholecystokinin in the Central Nervous System

  • Jens F. Rehfeld
  • Finn Cilius Nielsen
Part of the Neuroscience Intelligence Unit book series (NIU.LANDES)

Abstract

The recognition of widespread neuronal synthesis of bioactive peptides (neuropeptides) in the brain over the last decades has advanced basic neurobiology and biologically based psychiatry significantly. The neuropeptide concept is much broader than that covering the original small group of hypothalamic peptides regulating the release of pituitary hormones. Hence, neuropeptides constitute a large number of highly potent transmitters widely expressed in all regions of the central and peripheral nervous systems. Sometimes neuropeptides are co-synthesized and operate synergistically with the small so-called classical neurotransmitters like monoamines, acetylcholine and amino acids. Paradoxically, however, early primitive neurons such as those in coelenterates use peptide-transmitters rather than the “classical” small transmitters. Hence, neuropeptides are apparently the true classical or original transmitters. Possibly, neuropeptides are involved also in functions such as neuronal growth and metabolism (for reviews, see refs. 1 and 2).

Keywords

Regional Distribution Molecular Form Amygdaloid Nucleus Cholecystokinin Octapeptide Gastrin Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krieger DT. Brain peptides: what, where and why? Science 1983; 222: 975–985.PubMedCrossRefGoogle Scholar
  2. 2.
    Krieger DT, Brownstein MJ, Martin JB., eds. John Wiley and Son, New York. Brain Peptides 1984.Google Scholar
  3. 3.
    Rehfeld JF. Immunochemical studies on cholecystokinin. II. Distribution and molecular heterogeneity in the central nervous system and small intestine of man and hog. J Biol Chem 1978; 253: 4022–4030.PubMedGoogle Scholar
  4. 4.
    Larsson L-I, Rehfeld JF. Localization and molecular heterogeneity of cholecystokinin in the central and peripheral nervous system. Brain Res 1979; 165: 201–218.PubMedCrossRefGoogle Scholar
  5. 5.
    Lamers CB, Morley JE, Poitras P. et al. Immunological and biological studies on cholecystokinin in rat brain. Am J Physiol 1980; 239: E232 - E235.PubMedGoogle Scholar
  6. 6.
    Beinfeld MC, Palkovits M. Distribution of cholecystokinin in the hypothalamus and limbic system of the rat. Neuropeptides 1981; 2: 123–129.CrossRefGoogle Scholar
  7. 7.
    Marley PD, Rehfeld JF, Emson PC. Distribution and chromatographic characterisation of gastrin and cholecystokinin in the rat central nervous system. J Neurochem 1984; 42: 1523–1535.PubMedCrossRefGoogle Scholar
  8. 8.
    Tatemoto K, Carlquist M, Mutt V. Neuropeptide Y–a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 1982; 296: 659–660.PubMedCrossRefGoogle Scholar
  9. 9.
    Tatemoto K. Neuropeptide Y: complete amino acid sequence of the brain peptide. Proc Natl Acad Sci USA 1982; 79: 5485–5489.PubMedCrossRefGoogle Scholar
  10. 10.
    Allen YS, Adrian TE, Allen JM et al. Neuropeptide Y distribution in the rat brain. Science 1983; 221: 877–879.PubMedCrossRefGoogle Scholar
  11. 11.
    Adrian TE, Allen JM, Bloom SR et al. Neuropeptide Y distribution in human brain. Nature 1983; 306: 584–586.PubMedCrossRefGoogle Scholar
  12. 12.
    de Belleroche J, Dockray GJ., eds. Cholecystokinin (CCK) in the nervous system: current developments in neuropeptide research. Ellis Horwood Health Science Series, Chichester, UK 1984: 1–132.Google Scholar
  13. 13.
    Crawley J, Vanderhaeghen J-J. eds. Neuronal cholecystokinin. Ann NY Acad Sci 1985; 448: 1–686.Google Scholar
  14. 14.
    Dockray GJ, Woodruff G., eds. The neuropeptide cholecystokinin. Ellis Horwood Ltd., Chichester UK, 1989: 1–244.Google Scholar
  15. 15.
    Dourish CT, Cooper SJ, Iversen SD et al., eds. Multiple cholecystokinin receptors in the CNS. Oxford University Press 1992: 1–541.Google Scholar
  16. 16.
    Reeve JR, Eysselein V, Solomon T et al., eds. Cholecystokinin. Ann NY Acad Sci 1994; 713: 1–458.Google Scholar
  17. 17.
    Bernard C. Lecons de Physiologie Experimental 1856; 2: 429.Google Scholar
  18. 18.
    Wertheimer E. De l’action des acides et du chloral sur la sécretion biliaire. Comp Rend Soc Biol 1903; 55: 286–287.Google Scholar
  19. 19.
    Fleig C. Du mode d’action des exitants chimique des glandes digestives. Arch Int Physiol 1904; 1: 286–346.Google Scholar
  20. 20.
    Ivy AC, Oldberg E. Hormone mechanism for gallbladder contraction and evacuation. Am J Physiol 1928; 86: 599–613.Google Scholar
  21. 21.
    Ivy AC, Drewyer GE, Orndoff BH. Effect of cholecystokinin on human gallbladder. Endocrinology 1930; 14: 343–348.CrossRefGoogle Scholar
  22. 22.
    Sandblom P. Function of human gallbladder studies in connection with blood transfusions and after stomach operations. Acta Radiol 1933; 14: 249–258.CrossRefGoogle Scholar
  23. 23.
    Harper AA, Raper HS. Pancreozymin, a stimulant of the secretion of pancreatic enzymes in extracts of the small intestine. J Physiol 1943; 102: 115–125.PubMedGoogle Scholar
  24. 24.
    Crick J, Harper AA, Raper HS. On the preparation of secretin and pancreozymin. J Physiol 1949; 110, 367–376.PubMedGoogle Scholar
  25. 25.
    Mutt V, Jorpes JE. Isolation of aspartyl-phenylalanine amide from cholecystokinin-pancreozymin. Biochem Biophys Res Commun 1966; 26: 392–397.CrossRefGoogle Scholar
  26. 26.
    Mutt V, Jorpes JE. Structure of porcine cholecystokinin-pancreozymin. I. Cleavage with thrombin and with trypsin. Eur J Biochem 1968; 6: 156–162.PubMedCrossRefGoogle Scholar
  27. 27.
    Mutt V, Jorpes JE. Hormonal polypeptides of the upper intestine. Biochem J 1971; 125: 57P - 58 P.PubMedGoogle Scholar
  28. 28.
    Ondetti MA, Pluscec J, Sabo EF et al. Synthesis of cholecystokinin-pancreozymin. I. The C-terminal dodecapeptide. J Am Chem Soc 1970; 92: 195–216.PubMedCrossRefGoogle Scholar
  29. 29.
    Bodanzsky M, Chaturvedi N, Hudson D et al. Cholecystokinin-pancreozymin. I. The synthesis of peptides corresponding to the N-terminal sequence. J Org Chem 1972; 37: 2303–2312.CrossRefGoogle Scholar
  30. 30.
    Jorpes JE, Mutt V. Secretin and cholecystokinin (CCK). In eds. Jorpes JE and Mutt V. Handbook of Experimental Pharmacology Vol.YIV: Secretin, Cholecystokinin, Pancreozymin and Gastrin. Springer Verlag, Berlin 1973: 1–179.CrossRefGoogle Scholar
  31. 31.
    Rehfeld JF. How to measure cholecystokinin in plasma? Gastroenterology 1984; 87: 434–436.PubMedGoogle Scholar
  32. 32.
    Vanderhaeghen JJ, Signeau JC, Gepts W. New peptide in the vertebrate CNS reacting with gastrin antibodies. Nature 1975; 257: 604–605.PubMedCrossRefGoogle Scholar
  33. 33.
    Dockray GJ. Immunochemical evidence of cholecystokinin-like peptides in brain. Nature 1976; 264: 568–570.PubMedCrossRefGoogle Scholar
  34. 34.
    Müller JE, Straus E, Yalow RS. Cholecystokinin and its COOHterminal octapeptide in the pig brain. Proc Natl Acad Sci USA 1977; 74: 3035–3037.PubMedCrossRefGoogle Scholar
  35. 35.
    Rehfeld JF. Gastrins and cholecystokinin in brain and gut. Acta Pharmacol Toxicol 1977; 24: 44.Google Scholar
  36. 36.
    Rehfeld JF. Localization of gastrin to neuro-and adenohypophysis. Nature 1978; 271: 771–773.PubMedCrossRefGoogle Scholar
  37. 37.
    Larsson L-I, Rehfeld JF. Peptidergic and adrenergic innervation of pancreatic ganglia. Scand J Gastroenterol 1979; 14: 433–437.PubMedGoogle Scholar
  38. 38.
    Deschenes RJ, Lorenz LJ, Haun RS et al. Cloning and sequence analysis of a cDNA encoding rat preprocholecystokinin. Proc Natl Acad Sci USA 1984; 81: 726–730.PubMedCrossRefGoogle Scholar
  39. 39.
    Takahashi Y, Kato K, Hayashizaki Y et al. Molecular cloning of the human cholecystokinin gene by use of a synthetic probe containing deoxyinosine. Proc Natl Acad Sci USA 1985; 82: 1931–35.PubMedCrossRefGoogle Scholar
  40. 40.
    Goltermann NR, Rehfeld JF, Roigaard-Petersen H. In vivo biosynthesis of cholecystokinin in rat cerebral cortex. J Biol Chem 1980; 255: 6181–6185.PubMedGoogle Scholar
  41. 41.
    Eng J, Shiina Y, Pan Y-CE, Blacher R et al. Pig brain contains cholecystokinin octapeptide and several cholecystokinin desoctapeptides. Proc Natl Acad Sci USA 1983; 80: 6381–6385.PubMedCrossRefGoogle Scholar
  42. 42.
    Stengaard-Pedersen K, Larsson L-I, Fredens K et al. Modulation of cholecystokinin concentrations in the rat hippocampus by chelation of heavy metals. Proc Natl Acad Sci USA 1984; 81: 5876–5880.PubMedCrossRefGoogle Scholar
  43. 43.
    Rehfeld JF, Hansen HF. Characterization of preprocholecystokinin products in the porcine cerebral cortex: Evidence of different processing pathways. J Biol Chem 1986; 261: 5832–40.PubMedGoogle Scholar
  44. 44.
    Kelly RB. Pathways of protein secretion in encaryotes. Science 1985; 230: 25–32.PubMedCrossRefGoogle Scholar
  45. 45.
    Schwartz TW. The processing of peptide precursors. In: Okamoto H, ed. Molecular Biology of Islets of Langerhans. Cambridge University Press, London, 1990: 153–205.CrossRefGoogle Scholar
  46. 46.
    Eipper BA, Park LP, Dickerson IM et al. Structure of a precursor for an enzyme mediating COOH-terminal amidation in peptide biosynthesis. Mol Endocrinol 1987; 1: 777–90.PubMedCrossRefGoogle Scholar
  47. 47.
    Katopodis AG, Ping D, May SW. A novel enzyme from bovine neurointermediate pituitary catalyzes dealkylation of alphahydroxyglycine derivatives thereby functioning sequentially with peptidylglycine alpha-amidating monooxygenase in peptide amidation. Biochemistry 1990; 29: 6115–20.PubMedCrossRefGoogle Scholar
  48. 48.
    Murthy ASN, Mains RE, Eipper BA. Purification and characterization of peptidylglycine x-amidating monooxygenase from bovine neurointermediate pituitary. J Biol Chem 1986; 261: 1815–1822.PubMedGoogle Scholar
  49. 49.
    Perkins SN, Husten EJ, Eipper BA. The 108-kDA peptidylglycine alpha-amidating monooxygenase precursor contains two separable enzymatic activities involved in peptide amidation. Biochem Biophys Res Comm 1990; 171: 926–32.PubMedCrossRefGoogle Scholar
  50. 50.
    Eberlein GA, Eysselein VE, Davis MT et al. Patterns of prohormone processing: Order revealed by a new procholecystokinin-derived peptide. J Biol Chem 1992; 267: 1517–21.PubMedGoogle Scholar
  51. 51.
    Eng J, Du BH, Pan YCE et al. Purification and sequencing of a rat intestinal 22 amino acid C-terminal CCK-fragment. Peptides 1984; 5: 1203–1206.PubMedCrossRefGoogle Scholar
  52. 52.
    Mutt V. Further investigations on intestinal hormonal polypeptides. Clin Endocrinol 1976; 5: 175–84.CrossRefGoogle Scholar
  53. 53.
    Reeve JR, Eysselein V, Walsh JH et al. New molecular forms of cholecystokinin. J Biol Chem 1986; 261: 16392–97.PubMedGoogle Scholar
  54. 54.
    Dockray GJ, Gregory RA, Hutchison JB et al. Isolation, structure and biological activity of two cholecystokinin octapeptides from sheep brain. Nature 1978; 274: 711–713.PubMedCrossRefGoogle Scholar
  55. 55.
    Shively J, Reeve JR, Eysselein V et al. CCK-5: sequence analysis of a small cholecystokinin from canine brain and intestine. Amer J. Physiol 1987; 252: G272–75.Google Scholar
  56. 56.
    Eysselein V, Eberlein G, Ho FJ et al. An amino-terminal fragment of cholecystokinin-58 is present in the gut: Evidence for a similar processing site of procholecystokinin in canine gut and brain. Reg Peptides 1988; 22: 205–15.CrossRefGoogle Scholar
  57. 57.
    Cantor P, Rehfeld JF. Cholecystokinin in pig plasma: release of components devoid of a bioactive COOH-terminus. Amer J Physiol 1989; 256: G53–61.PubMedGoogle Scholar
  58. 58.
    Rehfeld JF. The molecular nature of cholecystokinin in plasma–an in vivo immunosorption study in rabbits. Scand J Gastroent 1994; 29: 110–21.PubMedCrossRefGoogle Scholar
  59. 59.
    Yoo OJ, Powell CT, Agarwal K. Molecular cloning and nucleotide sequence of full-length cDNA coding for porcine gastrin. Proc Natl Acad Sci USA 1982; 79: 1049–1053.PubMedCrossRefGoogle Scholar
  60. 60.
    Boel E, Vuust J, Norris K et al. Molecular cloning of human gastrin cDNA: evidence for evolution of gastrin by gene duplication. Proc Natl Acad Sci USA 1983; 80: 2866–2869.PubMedCrossRefGoogle Scholar
  61. 61.
    Marley PD, Rehfeld JF. Extraction techniques for gastrins and cholecystokinins in the rat central nervous system. J Neurochem 1984; 42: 1515–1522.PubMedCrossRefGoogle Scholar
  62. 62.
    Marley PD, Nagy JI, Emson PC et al. Cholecystokinin in the rat spinal cord: distribution and lack of effect of neonatal capsaicin treatment and rhizotomy. Brain Res 1982; 238: 494–498.PubMedCrossRefGoogle Scholar
  63. 63.
    Eysselein VE, Reeve JR, Shively JE et al. Partial structure of a large canine cholecystokinin (CCK-58): amino acid sequence. Peptides 1982; 3: 687–691.PubMedCrossRefGoogle Scholar
  64. 64.
    Rehfeld JF. Tetrin. In eds. Bloom SR, Polak JM. Gut Hormones. Churchill Livingstone, Edinburgh and London. 1981: 240–247.Google Scholar
  65. 65.
    Saito E, Sankaran H, Goldfine ID et al. Cholecystokinin receptors in the brain: characterization and distribution. Science 1980; 208: 1155–1156.PubMedCrossRefGoogle Scholar
  66. 66.
    Steigerwalt RW, Williams JA. Binding specificity of the mouse cerebral cortex receptor for small cholecystokinin peptides. Regul Pept 1984; 8: 51–59.PubMedCrossRefGoogle Scholar
  67. 67.
    Sankaran H, Goldfine ID, Deveney CW et al. Binding of cholecystokinin to high affinity receptors on isolated rat pancreatic acini. J Biol Chem 1980; 255: 1849–1853.PubMedGoogle Scholar
  68. 68.
    Sankaran H, Bailey AC, Williams JA. CCK-4 contains the full hormonal information of cholecystokinin in isolated pancreatic acini. Biochem Biophys Commun 1981; 103: 1356–1362.CrossRefGoogle Scholar
  69. 69.
    Rehfeld JF, Larsson L-I, Goltermann N et al. Neural regulation of pancreatic hormone secretion by the C-terminal tetrapeptide of CCK. Nature 1980; 284: 33–38.PubMedCrossRefGoogle Scholar
  70. 70.
    Rehfeld JF. Neuronal cholecystokinin: One or multiple transmitters? J Neurochem 1985; 44: 1–10.PubMedCrossRefGoogle Scholar
  71. 71.
    Gubler U, Chua AO, Hoffman BJ et al. Cloned cDNA to cholecystokinin mRNA predicts an identical preprocholecystokinin in pig brain and gut. Proc Natl Acad Sci USA 1984; 81: 4307–4310.PubMedCrossRefGoogle Scholar
  72. 72.
    Seva C, Dickinson CJ, Yamada T. Growth-promoting effects of glycine-extended progastrin. Science 1994; 265: 410–12.PubMedCrossRefGoogle Scholar
  73. 73.
    Rehfeld JF, Mogensen NW, Bardram L et al. Expression but failing maturation of procholecystokinin in cerebellum. Brain Res 1992; 576: 111–19.PubMedCrossRefGoogle Scholar
  74. 74.
    Rehfeld JF. Accumulation of non-amidated preprogastrin and preprocholecystokinin products in the porcine anterior pituitary. J Biol Chem 1986; 261: 5841–47.PubMedGoogle Scholar
  75. 75.
    Rehfeld JF. Preprocholecystokinin processing in the normal human anterior pituitary. Proc Natl Acad Sci USA 1987; 84: 3019–24.PubMedCrossRefGoogle Scholar
  76. 76.
    Rehfeld JF, Johnsen AH, Odum L et al. Nonsulfated cholecystokinin in human medullary thyroid carcinomas. J Endocrinol 1990; 124 501–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Bardram L, Hilsted L, Rehfeld JF. Cholecystokinin, gastrin and their precursors in pheochromocytomas. Acta Endocrinol 1989; 120: 479–84.PubMedGoogle Scholar
  78. 78.
    Ghatei MA, Sheppard MN, O’Shaughnessy DJ et al. Regulatory peptides in the mammalian respiratory tract. Endocrinol 1982; 111: 1248–54.CrossRefGoogle Scholar
  79. 79.
    Persson H, Rehfeld JF, Ericsson A et al. Transient expression of the cholecystokinin gene in male germ cells and accumulation of the peptide in the acrosomal granula. Proc Natl Acad Sci USA 1989; 86: 6166–70.PubMedCrossRefGoogle Scholar
  80. 80.
    Snyder SH, Innis RB. Peptide neurotransmitters. Annu Rev Biochem 1979; 48: 755–782.PubMedCrossRefGoogle Scholar
  81. 81.
    Dockray GJ, Gregory RA, Tracy HJ et al. Transport of cholecystokinin octapeptide-like immunoreactivity towards the gut in afferent vagal fibers in cat and dog. J Physiol 1981; 314: 501–511.PubMedGoogle Scholar
  82. 82.
    Rehfeld JF, Lundberg JM. Cholecystokinin in feline vagal and sciatic nerves: concentration, molecular form and transport velocity. Brain Res 1983; 275: 341–347.PubMedCrossRefGoogle Scholar
  83. 83.
    Pinget M, Straus E, Yalow RS. Localization of cholecystokinin-like immunoreactivity in isolated nerve terminals. Proc Natl Acad Sci USA 1978; 75: 6324–6326.PubMedCrossRefGoogle Scholar
  84. 84.
    Emson PC, Lee CM, Rehfeld JF. Cholecystokinin peptides: vesicular localization and calcium dependent release from rat brain in vitro. Life Sci 1980; 26: 2157–2162.PubMedCrossRefGoogle Scholar
  85. 85.
    Dodd PR, Edwardson JA, Dockray GJ. The depolarization-induced release of cholecystokinin C-terminal octapeptide (CCK-8) from rat synaptosomes and brain slices. Regul Pept 1980; 1: 17–19.CrossRefGoogle Scholar
  86. 86.
    Dodd J, Kelly JS. The actions of cholecystokinin and related peptides on pyramidal neurones of the mammalian hippocampus. Brain Res 1981; 205: 337–350.PubMedCrossRefGoogle Scholar
  87. 87.
    Deschodt-Lanckman M, Bui ND, Noyer M et al. Degradation of cholecystokinin-like peptides by a crude rat brain synaptosomal fraction: a study by high-pressure-liquid chromatography. Regul Pept 1981; 2: 15–30.PubMedCrossRefGoogle Scholar
  88. 88.
    Chiodo A, Bunney BS. Proglumide: selective antagonism of excitatory effects of cholecystokinin in central nervous system. Science 1983; 196: 998–1000.Google Scholar
  89. 89.
    Collins S, Walker D, Forsyth P et al. The effects of proglumide on cholecystokinin-, bombesin-and glucagon-induced satiety in the rat. Life Sci 1983; 32: 2223–2229.PubMedCrossRefGoogle Scholar
  90. 90.
    Robberecht P, Deschodt-Lanckman M, Vanderhaeghen J-J. Demonstration of biological activity of brain gastrin-like peptidergic material in the human: its relationship with the COOH-terminal octapeptide of cholecystokinin. Proc Natl Acad Sci USA 1978; 75: 524–528.PubMedCrossRefGoogle Scholar
  91. 91.
    Ryder SW, Eng J, Straus E et al. Alkaline extraction of cholecystokinin-immunoreacitivity from rat brain. Biochem Biophys Res Commun 1980; 94: 704–709.PubMedCrossRefGoogle Scholar
  92. 92.
    Ryder SW, Eng J, Straus E et al. Extraction and immunochemical characterization of cholecystokinin-like peptides from pig and rat brain. Proc Natl Acad Sci USA 1981, 78: 3892–3896.PubMedCrossRefGoogle Scholar
  93. 93.
    Barden N, Merand Y, Rouleau D et al. Regional distribution of somatostatin and cholecystokinin-like immunoreactivity in rat and bovine brain. Peptides 1981; 2: 299–302.PubMedCrossRefGoogle Scholar
  94. 94.
    Beinfeld MC, Meyer DK, Eskay RL et al. The distribution of cholecystokinin-immunoreactivity in the central nervous system of the rat as determined by radioimmunoassay. Brain Res 1981; 212: 51–57.PubMedCrossRefGoogle Scholar
  95. 95.
    Hays EE, Beinfeld MC, Jensen RT et al. Demonstration of a putative receptor site for cholecystokinin in rat brain. Neuropeptides 1980; 1: 53–62.CrossRefGoogle Scholar
  96. 96.
    Van Dijk A, Gillesen D, Möhler H et al. Autoradiographical localisation of cholecystokinin-receptor binding in rat brain and pancreas in vitro using 3H-CCK-8 as radioligand. Br J Pharmacol 1981; 74: 858 P.Google Scholar
  97. 97.
    Praissman M, Martinez PA, Saladino CF et al. Characterization of cholecystokinin binding sites in rat cerebral cortex using a 125I-CCK8 probe resistant to degradation. J Neurochem 1983; 40: 1406–1413.PubMedCrossRefGoogle Scholar
  98. 98.
    Rehfeld JF. Immunochemical studies on cholecystokinin. I. Development of sequence-specific radioimmunoassays for porcine triacontatriapeptide cholecystokinin. J Biol Chem 1978; 253: 4016–4021.PubMedGoogle Scholar
  99. 99.
    Rehfeld JF., ed. Bloom SR. Problems in the technology of radio-immunoassays for gut hormones in Gut Hormones 1978: 112–119.Google Scholar
  100. 100.
    Studler JM, Simon H, Cesselin F et al. Biochemical investigation on the localization of the cholecystokinin octapeptide in dopaminergic neurons originating from the ventral tegmental area of the rat. Neuropeptides 1981; 2: 131–139.CrossRefGoogle Scholar
  101. 101.
    Beinfeld MC, Meyer DK, Brownstein MJ. Cholecystokinin octapeptides in the rat hypothalamo-neurohypophyseal system. Nature 1980; 288: 376–378.PubMedCrossRefGoogle Scholar
  102. 102.
    Straus E, Ryder SW, Eng J et al. Immunochemical studies relating to cholecystokinin in brain and gut. Recent Prog Horm Res 1981; 37: 447–475.PubMedGoogle Scholar
  103. 103.
    Beinfeld MC. Chromatographic characterization of gastrin/ cholecystokin peptides in bovine and porcine pituitary. Peptides 1982; 3: 531–534.PubMedCrossRefGoogle Scholar
  104. 104.
    Rehfeld JF. Radioimmunochemical analysis of neuropeptides based on general characteristics for the analyte. Trends Anal Chem 1989; 8: 102–6.CrossRefGoogle Scholar
  105. 105.
    Rehfeld JF, Hansen HF, Larsson L-I et al. Gastrin and cholecystokinin in pituitary neurons. Proc Natl Acad Sci USA 1984; 81: 1902–1905.PubMedCrossRefGoogle Scholar
  106. 106.
    Uvnäs-Wallensten K, Rehfeld JF, Larsson L-I et al. Heptadecapeptide gastrin in the vagal nerve. Proc Natl Acad Sci USA 1977; 74: 5707–5710.PubMedCrossRefGoogle Scholar
  107. 107.
    Rehfeld JF. Progastrin and its products in the cerebellum. Neuropeptides 1991; 20: 239–45.PubMedCrossRefGoogle Scholar
  108. 108.
    Rehfeld JF, Kruse-Larsen C. Gastrin and cholecystokinin in human cerebrospinal fluid: immunochemical studies on concentrations and molecular heterogeneity. Brain Res. 1978; 155: 19–26.PubMedCrossRefGoogle Scholar
  109. 109.
    Kruse-Larsen C, Rehfeld JF. Gastrin in human cerebrospinal fluid: lack of correlation with serum concentrations. Brain Res 1979; 176: 189–191.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Jens F. Rehfeld
  • Finn Cilius Nielsen

There are no affiliations available

Personalised recommendations