Advertisement

Localization of EF-Hand Ca2+-Binding Proteins in the CNS

  • Claus W. Heizmann
  • Katharina Braun
Part of the Neuroscience Intelligence Unit book series (NIU.LANDES)

Abstract

The intention of this chapter is not to provide a complete review of all the anatomical literature dealing with the distribution of Ca2+-binding proteins in the central nervous system, rather an attempt is made to survey the distribution and cellular localization of Ca2+-binding proteins in selected brain systems of the mammalian brain. Special emphasis is placed on brain systems that are affected in certain neurodegenerative diseases of the human brain, such as hippocampus, cerebellum, basal ganglia and cortical areas. Since, for most of these brain regions, excellent, extensive, and very detailed descriptions of cell types, their distribution and pathways containing different Ca2+-binding proteins have already been published (for reviews see refs. 1–6), the following description is restricted to brain areas and their neurons and functional pathways, which are related to the pathology of brain diseases.

Keywords

Purkinje Cell Pyramidal Neuron Zebra Finch Axon Initial Segment Local Circuit Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Celio MR. Calbindin D28k and parvalbumin in the rat nervous system. Neurosci 1990; 35: 375–475.Google Scholar
  2. 2.
    Braun K. Calcium-binding proteins in avian and mammalian central nervous system: localization, development and possible functions. Progr Histochem Cytochem 1990; 21 /1: 1–64.Google Scholar
  3. 3.
    Heizmann CW, Braun K (1990) Calcium-binding proteins. Molecular and functional aspects. In: Anghileri LJ, ed. The Role of Calcium in Biological Systems. Boca Raton, FL: CRC Press Inc, 1990; 21–65.Google Scholar
  4. 4.
    Heizmann CW, Braun K. Changes in calcium-binding proteins in human neurodegenerative disorders. Trends Neurosci 1992; Vol 17/ 7: 259–264.Google Scholar
  5. 5.
    Baimbridge KG, Celio MR, Rogers JH. Calcium binding proteins in the nervous system. Trends Neurosci 1992; 15: 303–308.PubMedGoogle Scholar
  6. 6.
    Andressen C, Blümcke I, Celio MR. Calcium-binding proteins: selective markers of nerve cells. Cell Tissue Res 1993; 271: 181–208.PubMedGoogle Scholar
  7. 7.
    Leranth C, Ribak CE. Calcium binding proteins are concentrated in the CA2 field of the monkey hippocampus: A possible key to this region’s resistance to epileptic damage. Exp Brain Res 1991; 85: 129–136.PubMedGoogle Scholar
  8. 8.
    Sloviter RS, Sollas AL, Barbaro NM et al. Calcium-binding protein (calbindin-D28k) and parvalbumin immunocytochemistry in the normal and epileptic human hippocampus. J Comp Neurol 1991; 308: 381–396.PubMedGoogle Scholar
  9. 9.
    Seress L, Gulyas AI, Freund TF. Pyramidal neurons are immunoreactive for calbindin D28k in the CAl subfield of the human hippocampus. Neurosci Lett 1992; 138: 257–260.PubMedGoogle Scholar
  10. 10.
    Woodhams PL, Celio MR, Ulfig N et al. Morphological and functional correlates of borders in the entorhinal cortex and hippocampus. Hippocampus 1993; 3: 303–312.PubMedGoogle Scholar
  11. 11.
    Braak E, Strotkamp B, Braak H. Parvalbumin-immunoreactive structures in the hippocampus of the human adult. Cell Tissue Res 1991; 264: 33–48.PubMedGoogle Scholar
  12. 12.
    Ohshima T, Endo T, Onaya T. Distribution of parvalbumin immunoreactivity in the human brain. J Neurol 1991; 238: 320–322.PubMedGoogle Scholar
  13. 13.
    Seress L, Gulyas AI, Freund TF. Parvalbumin-and calbindin D28kimmunoreactive neurons in the hippocampal formation of the Macaque monkey. J Comp Neurol 1991; 313: 162–177.PubMedGoogle Scholar
  14. 14.
    Seress L, Gulyas AI, Ferrer I et al. Distribution, morphological features, and synaptic connections of parvalbumin-and calbindin D28k-immunoreactive neurons in the human hippocampal formation. J Comp Neurol 1993; 337: 208–230.PubMedGoogle Scholar
  15. 15.
    Pitkänen A, Amaral DG. Distribution of parvalbumin-immunoreactive cells and fibers in the monkey temporal lobe: The hippocampal formation. J Comp Neurol 1993; 331: 37–74.PubMedGoogle Scholar
  16. 16.
    Kosaka T, Katsumaru H, Hama K et al. GABAergic neurons containing the calcium-binding protein parvalbumin in the rat hippocampus and dentate gyrus. Brain Res 1987; 419: 119–130.PubMedGoogle Scholar
  17. 17.
    Katsumaru H, Kosaka T, Heizmann CW et al. Immunocytochemical study of GABAergic neurons containing the calcium-binding protein parvalbumin in the rat hippocampus. Exp Brain Res 1988; 72: 347–362.PubMedGoogle Scholar
  18. 18.
    Katsumaru H, Kosaka T, Heizmann CW et al. Gap-junctions on GABAergic neurons containing the calcium-binding protein parvalbumin in the rat hippocampus (CA1 regions). Exp Brain Res 1988b; 72: 363–370.PubMedGoogle Scholar
  19. 19.
    Sloviter RS. Calcium-binding protein (calbindin-D28K) and parvalbumin immunocytochemistry: localization in the rat hippo-campus with specific reference to the selective vulnerability of hippocampal neuron to seizure activity. J Comp Neurol 1989; 280: 183–196.PubMedGoogle Scholar
  20. 20.
    Gulyas AI, Toth K, Danos P et al. Subpopulations of GABAergic neurons containing parvalbumin, calbindin D29k and cholecystokinin in the rat hippocampus. J Comp Neurol 1991; 312: 371–378.PubMedGoogle Scholar
  21. 21.
    Toth K, Freund TF. Calbindin D28k-containing nonpyramidal cells in the rat hippocampus: their immunoreactivity for GABA and projection to the medial septum. Neurosci 1992; 49: 793–805.Google Scholar
  22. 22.
    Ribak CE, Seress L. Five types of basket cell in the hippocampal dentate gyrus: a combined Golgi and electron microscopic study. J Neurocytol 1983; 12: 577–597.PubMedGoogle Scholar
  23. 23.
    Somogyi P, Kisvarday ZF, Martin KAC et al. Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat. Neurosci 1983; 10: 261–294.Google Scholar
  24. 24.
    Somogyi P, Nunzi MG, Smith AD. A new type of specific inter-neuron in the monkey hippocampus forming synapses exclusively with the axon initial segments of pyramidal cells. Brain Res 1983; 259: 137–142.PubMedGoogle Scholar
  25. 25.
    Soriano E, Frotscher M. A GABAergic axo-axonic cell in the fascia dentata controls the main excitatory hippocampal pathway. Brain Res 1989; 503: 170–174.PubMedGoogle Scholar
  26. 26.
    Li XG, Somogyi JM, Tepper JM et al. Axonal and dendritic arborization of an intracellularly labeled chandelier cell in the CA1 region of rat hippocampus. Exp Brain Res 1992; 90: 519–525.PubMedGoogle Scholar
  27. 27.
    Sik A, Tamamaki N, Freund TF. Complete axon arborization of a single CA3 pyramidal cell in the rat hippocampus, and its relationship with postsynaptic parvalbumin-containing interneurons. Europ J Neurosci 1993; 5: 1719–1728.Google Scholar
  28. 28.
    van der Zee EA, de Jong GI, Strosberg AD et al. Parvalbuminpositive neurons in rat dorsal hippocampus contain muscarinic acteccholine receptors. Brain Res Bull 1991; 27: 697–700.PubMedGoogle Scholar
  29. 29.
    Van der Zee EA, Luiten PGM. GABAergic neurons of the rat dorsal hippocampus express muscarinic acetylcholine receptors. Brain Res Bull 1993; 32: 601–609.PubMedGoogle Scholar
  30. 30.
    Gulyas AI, Miles R, Hajos N et al. Precision and variability in postsynaptic target selection of inhibitory cells in the hippocampal CA3 region. Eur J Neurosci 1993; 5: 1729–1751.PubMedGoogle Scholar
  31. 31.
    Han Z-S, Buhl EG, Lörinczi et al. A high degree of spatial selectivity in the axonal and dendritic domains of physiologically identified local-circuit neurons in the dentate gyrus of the rat hippo-campus. Eur J Neurosci 1993; 5: 395–410.PubMedGoogle Scholar
  32. 32.
    Nitsch R, Leranth C. Calretinin immunoreactivity in the monkey hippocampal formation–II. Intrinsic GABAergic and hypothalamic non-GABAergic systems: an experimental tracing and co-existence study. Neurosci 1993; 55: 797–812.Google Scholar
  33. 33.
    Gulyas AI, Miettinen R, Jacobowitz DM et al. Calretinin is present in non-pyramidal cells of the rat hippocampus–III. A new type of neuron specifically associated with the mossy fiber system. Neurosci 1992; 48: 1–27.Google Scholar
  34. 34.
    Miettinen R, Gulyas AI, Baimbridge KG et al. Calretinin is present in non-pyramidal cells of the rat hippocampus–II. Coexistence with other calcium binding proteins and GABA. Neurosci 1992; 48: 29–43.Google Scholar
  35. 35.
    Kamphuis W, Huisman E, Wadman WJ et al. Kindling induced changes in parvalbumin immunoreactivity in rat hippocampus and its relation to long-term decrease in GABA-immunoreactivity. Brain Res 1989; 479: 23–34.PubMedGoogle Scholar
  36. 36.
    Freund TF, Buszaki G, Leon A et al. Relationship of neuronal vulnerability and calcium binding protein immunoreactivity in ischemia. Exp Brain Res 1990; 83: 55–66.PubMedGoogle Scholar
  37. 37.
    Seto-Ohshima A, Kitajima S, Sano M et al. Immunohistochemical localization of calmodulin in mouse brain. Histochem 1983; 79: 251–257.Google Scholar
  38. 38.
    Seto-Ohshima A. Review:. Calcium-binding proteins in the central nervous system. Acta Histochem Cytochem 1994; 27 (2): 93–106.Google Scholar
  39. 39.
    Goto S, Matsukado Y, Mihara Y et al. The distribution of calcineurin in rat brain by light and electron microscopy immunohistochemistry and enzyme immunoassay. Brain Res 1986; 397: 161–172.PubMedGoogle Scholar
  40. 40.
    Goto S, Matsukado Y, Mihara Y et al. Calcineurin as a neuronal marker of human brain tumors. Brain Res 1986; 371: 237–243.PubMedGoogle Scholar
  41. 41.
    Munoz DG. The distribution of chomogranin A-like immunoreactivity in the human hippocampus coincides with the pattern of resistance to epilepsy-induced neuronal damage. Ann Neurol 1990; 27: 266–275.PubMedGoogle Scholar
  42. 42.
    Waldvogel HJ, Faull RLM. Compartmentalization of parvalbumin immunoreactivity in the human striatum. Brain Res 1993; 610: 311–316.PubMedGoogle Scholar
  43. 43.
    Cowan RL, Wilson CJ, Emson PC et al. Parvalbumin-containing GABAergic interneurons in the rat neostriatum. J Comp Neurol 1990; 302: 197–205.PubMedGoogle Scholar
  44. 44.
    Kita H, Kitai ST. Amygdaloid projections to the frontal cortex and the striatum in the rat. J Comp Neurology 1990; 298: 40–49.Google Scholar
  45. 45.
    Kita H, Kosaka T, Heizmann CW. Parvalbumin-immunoreactive neurons in the rat neostriatum: a light and electron microscopic study. Brain Res 1990; 536: 1–15.PubMedGoogle Scholar
  46. 46.
    Gerfen CR, Baimbridge KG, Miller JJ. The neostriatal mosaic: complementary distribution of calcium-binding protein and parvalbumin in the basal ganglia of the rat and monkey. Proc Natl Acad Sci USA 1985; 82: 8780–8784.PubMedGoogle Scholar
  47. 47.
    Gerfen CR, Baimbridge KG, Thibault J. The neostriatal mosaic. III. Biochemical and developmental dissociation of patch-matrix mesostriatal systems. J Neurosci 1987; 7: 3935–3944.PubMedGoogle Scholar
  48. 48.
    Kubota Y, Kawaguchi Y. Spatial distributions of chemically identified intrinsic neurons in relation to patch and matrix compartments of rat neostriatum. J Comp Neurol 1993; 332: 499–513.PubMedGoogle Scholar
  49. 49.
    Garcia-Segura LM, Baetens D, Roth J et al. Immunohistochemical mapping of calcium-binding protein immunoreactivity in the rat central nervous system. Brain Res 1984; 296: 75–86.PubMedGoogle Scholar
  50. 50.
    DiFiglia M, Christakos S, Aronin N. Ultrastructural localization of immunoreactive calbindin-D28k in the rat and monkey basal ganglia, including subcellular distribution with colloidal gold labeling. J Comp Neurol 1989; 279: 653–665.PubMedGoogle Scholar
  51. 51.
    Bennett BD, Bolam JP. Characterization of calretinin-immunoreactive structures in the striatum of the rat. Brain Res 1993; 609: 137–148.PubMedGoogle Scholar
  52. 52.
    Bennett BD, Bolam JP. Two populations of calbindin D28k-immunoreactive neurons in the striatum of the rat. Brain Res 1993; 610: 305–310.PubMedGoogle Scholar
  53. 53.
    Gerfen CR. The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci 1992; 15 (4): 133–139.PubMedGoogle Scholar
  54. 54.
    Kubota Y, Mikawa S, Kawaguchi Y. Neostriatal GABAergic inter-neurons contain NOS, calretinin or parvalbumin. NeuroReport 1993; 5: 205–208.PubMedGoogle Scholar
  55. 55.
    Wood JG, Wallace RW, Whitaker JN et al. Immunocytochemical localization of calmodulin and a heat-labile calmodulin-binding protein (CaM-BP80) in basal ganglia of mouse brain. J Cell Biol 1980; 84: 66–76.PubMedGoogle Scholar
  56. 56.
    Seto-Ohshima A, Keino H, Kitajima S et al. Developmental change of the immunoreactivity to anti-calmodulin antibody in the mouse brain. Acta Histochem Cytochem 1984; 17: 109–117.Google Scholar
  57. 57.
    Biber A, Schmid G, Hempel K. Calmodulin content in specific brain areas. Exp Brain Res 1984; 56: 323–326.PubMedGoogle Scholar
  58. 58.
    Teolato S, Calderini G, Bonetti AC et al. Calmodulin content in different brain areas of aging rats. Neurosci Lett 1986; 38: 57–60.Google Scholar
  59. 59.
    Hoskins B, Ho JK. Effects of maturation and aging on calmodulin and calmodulin-regulated enzymes in various regions of mouse brain. Mechanisms of Aging and Development 1986; 36: 173–186.Google Scholar
  60. 60.
    Berchtold MW, Celio MR, Heizmann CW. Parvalbumin in human brain. J Neurochem 1985; 45: 235–239.PubMedGoogle Scholar
  61. 61.
    Kosaka T, Heizmann CW, Tateishi K et al. An aspect of the organizational principle of the gamma-aminobutyric system in the cerebral cortex. Brain Res 1987; 409: 403–408.PubMedGoogle Scholar
  62. 62.
    Celio MR. Parvalbumin in most gamma-aminobutyric acid-containing neurons of the rat cerebral cortex. Science 1986; 231: 995–997.PubMedGoogle Scholar
  63. 63.
    Demeulemeester H, Vandesande F, Orban GA et al. Heterogeneity of GABAergic cells in cat visual cortex. J Neurosci 1988; 8: 988–1000.PubMedGoogle Scholar
  64. 64.
    Demeulemeester H, Arckens L, Vandesande F et al. Calcium binding proteins and neuropeptides as molecular markers of GABAergic interneurons in the cat visual cortex. Exp Brain Res 1991; 84: 538–544.PubMedGoogle Scholar
  65. 65.
    Stichel CC, Singer W, Heizmann CW et al. Immunohistochemical localization of calcium-binding proteins, parvalbumin and calbindinD28k, in the adult and developing visual cortex of cats: a light and electron microscopic study. J Comp Neurol 1987; 262: 563–577.PubMedGoogle Scholar
  66. 66.
    Hendry SHC, Jones EG, Emson PC et al. Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivities. Exp Brain Res 1989; 76: 467–472.PubMedGoogle Scholar
  67. 67.
    van Brederode JFM, Mulligan KA, Hendrickson AE. Calcium-binding proteins as markers for subpopulations of GABAergic neurons in monkey striate cortex. J Comp Neurol 1990; 298: 1–22.PubMedGoogle Scholar
  68. 68.
    DeFelipe J, Hendry SHC, Jones EG. Visualization of chandelier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex. Proc Natl Acad Sci USA 1989; 86: 2093–2097.PubMedGoogle Scholar
  69. 69.
    DeFelipe J, Hendry SHC, Jones EG. Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity. Brain Res 1989b; 503: 49–54.PubMedGoogle Scholar
  70. 70.
    Blümcke I, Hof PR, Morrison JH et al. Distribution of parvalbumin immunoreactivity in the visual cortex of Old World monkeys and humans. J Comp Neurol 1990; 301: 417–432.PubMedGoogle Scholar
  71. 71.
    Lewis DA, Lund JS. Heterogeneity of chandelier neurons in monkey neocortex: Corticotropin-releasing factor-and parvalbumin-immunoreactive populations. J Comp Neurol 1990; 293: 599–615.PubMedGoogle Scholar
  72. 72.
    Hendrickson AE, van Brederode JFM, Mulligan KA et al. Development of the calcium-binding proteins parvalbumin and calbindin in monkey striate cortex. J Comp Neurol 1991; 307: 626–646.PubMedGoogle Scholar
  73. 73.
    Spatz WB, Illing RB, Vogt Weisenhorn DM. Distribution of cytochrome oxidase and parvalbumin in primary visual cortex of the adult and neonate monkey, Callithrix jacchus. J Comp Neurol 1994; 339: 519–534.PubMedGoogle Scholar
  74. 74.
    McMullen NT, Smelser CB, De Denecia RK. A quantitative analysis of parvalbumin neurons in rabbit auditory neocortex. J Comp Neurol 1994; 349: 493–511.PubMedGoogle Scholar
  75. 75.
    DeFelipe J, Hendry SHC, Hashikawa T et al. A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons. Neurosci 1990; 37: 655–673.Google Scholar
  76. 76.
    DeFelipe J, Jones EG. High-resolution light and electron microscopic immunocytochemistry of colocalized GABA and calbindin D28K in somata and double bouquet cell axons of monkey somatosensory cortex. Eur J Neurosci 1992; 4: 46–60.PubMedGoogle Scholar
  77. 77.
    Alcantara S, Ferrer I, Soriano E. Postnatal development of parvalbumin and calbindin D-28K immunoreactivities in the cerebral cortex of the rat. Anat Embryol 1993; 188: 63–73.PubMedGoogle Scholar
  78. 78.
    Hogan D, Berman NEJ. Transient expression of calbindin D28K immunoreactivity in layer V pyramidal neurons during postnatal development of kitten cortical areas. Devel Brain Res 1993; 74: 177–192.Google Scholar
  79. 79.
    Frantz GD, Tobin AJ. Cellular distribution of calbindin D28k mRNAs in the adult mouse brain. J Neurosci Res 1994; 37:. 287-302.PubMedGoogle Scholar
  80. 80.
    Glezer II, Hof PR, Morgane PJ. Calretinin-immunoreactive neurons in the primary visual cortex of dolphin and human brains. Brain Res 1992; 595: 181–188.PubMedGoogle Scholar
  81. 81.
    Glezer II, Hof PR, Leranth C et al. Calcium-binding protein-containing neuronal populations in mammalian visual cortex: a cornparative study in whales, insectivores, bats, rodents and primates. Cerebral Cortex 1993; 3: 249–272.PubMedGoogle Scholar
  82. 82.
    DeFelipe J. Neocortical neuronal diversity: chemical heterogeneity revealed by colocalization studies of classic neurotransmitters, neuropeptides, calcium-binding proteins and cell surface molecules. Cerebral Cortex 1993; 3: 273–289.PubMedGoogle Scholar
  83. 83.
    Hendry SHC, Carder RK. Neurochemical compartmentation of monkey and human visual cortex: Similarities and variations in calbindin immunoreactivity across species. Vis Neurosci 1993; 10: 1109–1120.PubMedGoogle Scholar
  84. 84.
    Blümcke I, Hof PR, Morrison JH et al. Parvalbumin in the monkey striate cortex: a quantitative immunoelectron-microscopy study. Brain Res 1991; 554: 237–243.PubMedGoogle Scholar
  85. 85.
    DelRio MR, DeFelipe J. A study of SMI 32-stained pyramidal cells, parvalbumin-immunoreactive chandelier cells, and presumptive thalamocortical axons in the human temporal neocortex. J Comp Neurol 1994; 342: 389–408.Google Scholar
  86. 86.
    Braun K, Scheich H, Schachner M et al. Distribution of parvalbumin, cytochrome oxidase activity and [141C-2-deoxyglucose uptake in the brain of the zebra finch. I. Auditory and vocal motor systems. Cell Tissue Res 1985; 240: 101–115.Google Scholar
  87. 87.
    Braun K, Scheich H, Schachner M et al. Distribution of parvalbumin, cytochrome oxidase activity and 1143C-2-deoxyglucose uptake in the brain of the zebra finch. II. Visual system. Cell Tissue Res 1985; 240: 117–127.Google Scholar
  88. 88.
    Lewis DA, Snyder CL, Sesack SR. Calretinin-immunoreactive neurons in monkey prefrontal cortex: ultrastructure and associations with dopamine afferents. Soc Neurosci Abstr 1994; 20: 578. 12.Google Scholar
  89. 89.
    Rogers JH. Immunohistochemical markers in rat cortex: co-localization of calretinin and calbindin-D28k with neuropeptides and GABA. Brain Res 1992; 587: 147–157.PubMedGoogle Scholar
  90. 90.
    Daviss SR, Lewis DA. Calbindin-and calretinin-immunoreactive local circuit neurons are increased in density in the prefrontal cortex of schizophrenic subjects. Soc Neurosci Abstr 1993; 19: 84. 9.Google Scholar
  91. 91.
    Goto S, Singer W, Gu Q. Immunocytochemical localization of calcineurin in the adult and developing primary visual cortex of cats. Exp Brain Res 1993; 96: 377–386.PubMedGoogle Scholar
  92. 92.
    Goto S, Nagahiro S, Korematsu K et al. Cellular colocalization of calcium/calmodulin-dependent protein kinase II and calcineurin in the rat cerebral cortex and hippocampus. Neurosci Lett 1993; 149: 189–192.PubMedGoogle Scholar
  93. 93.
    Saitoh S, Takamatsu K, Kobayashi M et al. Distribution of hippocalcin mRNA and immunoreactivity in rat brain. Neurosci Lett 1993; 157: 107–110.PubMedGoogle Scholar
  94. 94.
    Dyck RH, Van Eldik LJ, Cynader MS. Immunohistochemical localization of the S 1001 protein in postnatal cat visual cortex: spatial and temporal patterns of expression in cortical and subcortical glia. Devel Brain Res 1993; 72: 181–192.Google Scholar
  95. 95.
    Taylor, AN, Brindak ME. Chick brain calcium-binding protein: comparison with intestinal vitamin D-induced calcium-binding protein. Arch Biochem Biophys 1974; 161: 100–108.Google Scholar
  96. 96.
    Jande SS, Maler L, Lawson DEM. Immunohistochemical mapping of vitamin D-dependent calcium-binding protein in brain. Nature 1981; 294: 765–767.PubMedGoogle Scholar
  97. 97.
    Jande SS, Tolnal S, Lawson DEM. Immunohistochemical localization of vitamin D-dependent calcium-binding protein in duodenum, kidney, uterus and cerebellum of chickens. Histochem 1981; 71: 99–116.Google Scholar
  98. 98.
    Roth J, Baetens D, Norman AW et al. Specific neurons in chick central nervous system stain with an antibody against chick intestinal vitamin D-dependent calcium-binding protein. Brain Res 1981; 222: 452–457.PubMedGoogle Scholar
  99. 99.
    Baimbridge KG, Miller JJ. Immunohistochemical localization of calcium-binding protein in the cerebellum, hippocampal formation and olfactory bulb of the rat. Brain Res 1982; 245: 223–229.PubMedGoogle Scholar
  100. 100.
    Celio MR, Heizmann CW. Calcium-binding protein parvalbumin as a neuronal marker. Nature 1991; 293: 300–302.Google Scholar
  101. 101.
    Braun K, Schachner M, Scheich H, Heizmann CW. Cellular localization of the Cat’-binding protein parvalbumin in the developing avian cerebellum. Cell Tissue Res 1986; 243: 69–78.Google Scholar
  102. 102.
    Stichel CC, Kägi U, Heizmann CW. Parvalbumin in cat brain: isolation, characterization and localization. J Neurochem 1986; 47: 46–53.PubMedGoogle Scholar
  103. 103.
    Lin CT, Dedman JR, Brinkley BR et al. Localization of calmodulin in rat cerebellum by immunoelectron microscopy. J Cell Biol 1980; 85: 473–480.PubMedGoogle Scholar
  104. 104.
    Caceres A, Bender P, Snavely L et al. Distribution and subcellular localization of calmodulin in adult and developing brain tissue. Neurosci 1983; 10: 449–461.Google Scholar
  105. 105.
    Seto-Ohshima A, Sano M, Mizutani A. Characteristic localization of calmodulin in human tissues: immunohistochemical study in the paraffin sections. Acta Histochem Cytochem 1985; 18: 275–282.Google Scholar
  106. 106.
    Goto S, Matsukado Y, Uemura S et al. A comparative immunohistochemical study of calcineurin and S-100 protein in mammalian and avian brains. Exp Brain Res 1988; 69: 645–650.PubMedGoogle Scholar
  107. 107.
    Rogers JH. Calretinin: a gene for novel calcium-binding protein expressed principally in neurons. J Cell Biol 1987; 105: 1343–1353.PubMedGoogle Scholar
  108. 108.
    Sequier J-M, Hunziker W, Richards G. Localization of calbindin D-28KmRNA in rat tissues by in situ hybridization. Neurosci Lett 1988; 86: 155–160.PubMedGoogle Scholar
  109. 109.
    Pasteels B, Pochet R, Surardt L et al. Ultrastrucural localization of brain “Vitamin D-dependent” calcium binding proteins. Brain Res 1986; 384: 294–303.PubMedGoogle Scholar
  110. 110.
    Kadowaki K, McGowan E, Mock G et al. Distribution of calcium binding protein mRNAs in rat cerebellar cortex. Neurosic Lett 1993; 153: 80–84.Google Scholar
  111. 111.
    Pinol HR, Kägi U, Heizmann CW et al. Poly-and monoclonal antibodies against recombinant rat brain calbindin D-28K were produced to map its selective distribution in the central nervous system. J Neurochem 1990; 54: 1827–1833.PubMedGoogle Scholar
  112. 112.
    Scotti AL, Nitsch C. Differential Ca2+ binding properties in the human cerebellar cortex: distribution of parvalbumin and calbindin D-28k immunoreactivity. Anat Embryol 1992; 185: 163–167.PubMedGoogle Scholar
  113. 113.
    Katsekos CD, Frankfurter A, Christakos S et al. Differential localization of class III–tubulin isotype and calbindin-D28K defines distinct neuronal types in the developing human cerebellar cortex. J Neuropathol and Exp Neurol 1993; 52: 655–666.Google Scholar
  114. 114.
    Plogmann D, Celio MR. Intracellular concentration of parvalbumin in nerve cells. Brain Res 1993; 600: 273–279.PubMedGoogle Scholar
  115. 115.
    Kosaka T, Kosaka K, Nakayama T et al. Axons and axon terminals of cerebellar Purkinje cells and basket cells have higher levels of parvalbumin immunoreactivity than somata and dendrites: quantitative analysis by immunogold labeling. Exp Brain Res 1993; 93: 483–491.PubMedGoogle Scholar
  116. 116.
    Tolosa de Talamoni N, Smith CA, Wasserman RH et al. Immunocytochemical localization of the plasma membrane calcium pump, calbindin D-28K and parvalbumin in Purkinje cells of avian and mammalian cerebellum. Proc Natl Acad Sci USA 1993; 90: 11949–11953.Google Scholar
  117. 117.
    Brorson JR, Bleakman D, Gibbons SJ et al. The properties of intracellular calcium stores in cultured rat cerebellar neurons. J Neurosci 1991; 11: 4024–4043.PubMedGoogle Scholar
  118. 118.
    Rogers JH. Calretinin. In: Heizmann CW, ed. Novel Calcium Binding Proteins. Berlin: Springer Verlag, 1991: 251–276.Google Scholar
  119. 119.
    Arai R, Winsky L, Arai M et al. Immunohistochemical localization of calretinin in the rat hindbrain. J Comp Neurol 1991; 310: 21–44.PubMedGoogle Scholar
  120. 120.
    Arai R, Jacobowitz DM, Deura S. Ultrastructural localization of calretinin immunoreactivity in lobule V of the rat cerebellum. Brain Res 1993; 613: 300–304.PubMedGoogle Scholar
  121. 121.
    Rogers JH. Immunoreactivity for calretinin and other calcium binding proteins in the cerebellum. Neuroscience 1989; 31: 711–721.PubMedGoogle Scholar
  122. 122.
    Resibois A, Rogers JH. Calretinin in rat brain: an immunohistochemical study. Neuroscience 1992; 46: 101–134.PubMedGoogle Scholar
  123. 123.
    Braak E, Braak H. The new monodendritic neuronal type within the adult human cerebellar granule cell layer shows calretinin-immunoreactivity. Neurosci Lett 1993; 154: 199–202.PubMedGoogle Scholar
  124. 124.
    Yamakuni T, Usui H, Iwanaga T et al. Isolation and immunohistochemical localization of a cerebellar protein. Neurosci Lett 1984; 45: 235–240.PubMedGoogle Scholar
  125. 125.
    Yamakuni T, Araki K, Takahashi Y. The developmental changes of mRNA levels for a cerebellar protein (spot 35 protein) in rat brains. FEBS Lett 1985; 188: 127–130.PubMedGoogle Scholar
  126. 126.
    Dawson TM, Steiner JP, Lyons WE et al. The immunophilins, FK506 binding protein and cyclophilin, are discretely localized in the brain: relationship to calcineurin. Neurosci 1994; 62: 569–580.Google Scholar
  127. 127.
    Lenz SE, Henschel Y, Zopf D et al. VILIP, a cognate protein of the retinal calcium binding proteins visinin and recoverin, is expressed in the developing chicken brain. Molec Brain Res 1992; 15: 133–140.PubMedGoogle Scholar
  128. 128.
    Ito A, Hashimoto T, Hirai M et al. The complete primary structure of calcineurin A, a calmodulin binding protein homologous with protein phosphatase A and 2A. Biochem Biophys Res Commun 1989; 163: 1492–1497.PubMedGoogle Scholar
  129. 129.
    Goto S, Matsukado Y, Miyamoto E et al. Morphological characterization of the rat striatal neurons expressing calcineurin immunoreactivity. Neurosci 1987; 22: 189–201.Google Scholar
  130. 130.
    Zuschratter W, Scheich H, Heizmann CW. Ultrastructural localization of the calcium-binding protein parvalbumin in neurons of the song system of the zebra finch. Cell Tissue Res 1985; 241: 77–83.PubMedGoogle Scholar
  131. 131.
    Celio MR, Keller GA, Bloom FA. Immunoelectron microscopy of neural antigens on ultrathin frozen sections. J Histochem Cytochem 1986; 34: 491–500.PubMedGoogle Scholar
  132. 132.
    Legrand C, Thomasset M, Parkes CO et al. Calcium binding protein in the developing rat cerebellum. Cell Tissue Res 1983; 233: 389–402.PubMedGoogle Scholar
  133. 133.
    Aronin N, Chase K, Folsom R et al. Immunoreactive calcium-binding protein (calbindin D28K) in interneurons and trigeminothalamic neurons of the rat nucleus caudalis localized with peroxidase and immunogold methods. Synapse 1991; 7: 106–113.PubMedGoogle Scholar
  134. 134.
    Legrand C, Clos J, Legrand J et al. Localization of S100 protein in the rat cerebellum: an immunoelectron microscopy study. Neuropathol Appl Neurobiol 1981; 7: 299–306.PubMedGoogle Scholar
  135. 135.
    Llinas R, Hess R. The role of calcium in neuronal function. In: Schmitt FO, Worden FG, eds. The Neurosciences: Fourth Study Program. Cambridge Massachussetts-London: MIT Press, 1979: 555–571.Google Scholar
  136. 136.
    Lynch G, Baudry M. The biochemistry of memory: a new and specific hypothesis. Science 1984; 224: 1057–1063.PubMedGoogle Scholar
  137. 137.
    Fifkova E. Actin in the nervous system. Brain Res Rev 1985; 9: 187–215.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Claus W. Heizmann
    • 1
  • Katharina Braun
    • 2
  1. 1.University of ZurichZurichSwitzerland
  2. 2.Federal Institute for NeurobiologyMagdeburgGermany

Personalised recommendations