Skip to main content

Marine Lebensgemeinschaften IV: Benthos der Sedimente

  • Chapter
Biologische Meereskunde

Part of the book series: Springer-Lehrbuch ((SLB))

  • 263 Accesses

Zusammenfassung

Die biologische Besiedlung von Sand- und Schlickflächen wirkt auf den ersten Blick sehr viel eintöniger als die Besiedlung von Felsgrund. Natürlich ist dieser Eindruck im wahrsten Sinne des Wortes „oberflächlich“, da ein großer Teil der Sedimentfauna eingegraben lebt. Dennoch ist es kein falscher Eindruck, soweit er sich nur auf makroskopisch erkennbare Tiere und Pflanzen bezieht. Im Bereich der Mikroorganismen ist das Sediment hingegen ein Ort höchster Vielfalt, die sich allerdings nicht so sehr als morphologische, sondern vielmehr als physiologische Vielfalt äußert. Nirgendwo sonst sind auf so engem Raum so viele Grundtypen des Stoffwechsels vertreten wie im Sediment mit seinen steilen RedoxGradienten und seiner räumlichen Überlappung des Auftretens oxidierter und reduzierter Substanzen. Die Vielfalt der Stoffwechseltypen und die daraus resultierenden metabolischen Leistungen der Sedimentbakterien verleihen dem Sediment eine Schlüsselrolle in den biogeochemischen Stoffkreisläufen der Meere und des Gesamtsystems Biosphäre.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Admiraal W, Peletier H, Brouwer T (1984) The seasonal succession patterns of diatom species on an intertidal mudflat: an experimental analysis. Oikos 42: 30–40

    Article  Google Scholar 

  • Ankar S (1977) The soft bottom ecosystem of the Northern Baltic proper with special reference to the macrofauna. Contrib Askö Lab Univ Stockholm 19: 1–62

    Google Scholar 

  • Armonies W (1988) Active mergence of meiofauna from intertidal sediments. Mar Ecol Progr Ser 43: 151–159

    Article  Google Scholar 

  • Boaden PJS, Platt HM (1971) Daily migration pattern in an intertidal meiobenthic community. Thalassia Jugosl 7: 1–12

    Google Scholar 

  • Burke MV, Mann KH (1974) Productivity and production: biomass ratios of bivalves and gastropod populations in an Eastern Canadian estuary. J Fish Res Bd Can 31: 167–177

    Google Scholar 

  • Colijn F, De Jonge VN (1984) Primary production of periphyton in the Ems-Dollard estuary. Mar Ecol Progr Ser 14: 185–196

    Article  Google Scholar 

  • Conolly RM (1994) Removal of seagrass canopy: effects on small fish and their prey. J Exp Mar Biol Ecol 184: 99–110

    Article  Google Scholar 

  • De Wit R, van Boekel WHM, van Generden H (1988) Growth of the cyanobacterium Microcoleus chtonoplastes on sulfide. FEMS Microbiol Ecol 53: 203–209

    Article  Google Scholar 

  • Dittmann S (1990) Mussel beds–amensalism or amelioration for intertidal fauna. Helgol Meeresunters 44: 335–352

    Article  Google Scholar 

  • Dittmann S (1993) Impact of foraging soldiercrabs (Decapoda: Mictyridae) on meiofauna in a tropical tidal flat. Rev Biol Trop 41: 627–637

    Google Scholar 

  • Dörjes J (1987) Sedimentbiologie und Biota der Mellumplate. In: Gerdes G, Krumbein WE, Reineck HE (Hrsg) Mellum: Portrait einer Insel. Kramer, Franfurt, S 163–169

    Google Scholar 

  • Ehrlich HL (1972) The role of microbes in manganese nodule genesis and degradation. In: Horn D (Hrsg) Ferromanganese deposits on the ocean floor. Nat Science Found, Washington, pp 63–70

    Google Scholar 

  • Fenchel T (1969) The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem, its chemical and physical factors, and the microfauna communities with special reference to the ciliate protozoa. Ophelia 6: 1–182

    Article  Google Scholar 

  • Fenchel T, Kofoesd LH, Lappalainen A (1975) Particle size-selection of two deposit feeders: the amphipod Corophium volutator and the prosobranch Hydrobia ulvae. Mar Biol 30: 119128

    Google Scholar 

  • Fenchel TM, Riedl RJ (1970) The sulfide system: a new biotic community underneath the oxidized layer of marine sand bottoms. Mar Biol 7: 255–268

    Article  CAS  Google Scholar 

  • Flemming BW, Davis RA (1994) Holocene evolution, morphodynamics and sedimetology of the barrier island system. Senckenbergiana maritima 24: 117–155

    Google Scholar 

  • Gargas E (1971) Sun-shade adaptation and vertikal distribution in microbenthic algae from the Oresund. Ophelia 9: 106–112

    Article  Google Scholar 

  • Gerdol V, Hughes RG (1994) Effects of Corophium volutator on the abundance of benthic diatoms, bacteria and sediment stability in two estuaries in southeastern England. Mar Ecol Progr Ser 114: 109–115

    Article  Google Scholar 

  • Giere 0 (1992) Benthic life in sulfidic zones of the seas–ecological and structural adaptations to a toxic environment. Verh Dtsch Zool Ges 85: 77–93

    Google Scholar 

  • Giere 0 (1993) Meiobenthology. Springer, Berlin, Heidelberg, New York, Tokyo

    Google Scholar 

  • Gray JS (1984) Ökologie mariner Sedimente. Springer, Berlin, Heidelberg, New York, Tokyo

    Google Scholar 

  • Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Oceanogr Mar Biol Ann Rev 23: 399–489

    Google Scholar 

  • Jensen P (1987) Differences in microhabitat, abundance, biomass and body size between oxybiotic and thiobiotic free-living marine nematodes. Oecologia 71: 564–567

    Article  Google Scholar 

  • Jorgensen BB, Revsbach NP, Blackburn TH, Cohen Y (1979) Diurnal cycle of oxygen and sulfide microgradients and microbial photosynthesis in a cyanobacterial mat. Appl Environm Microbiol 38: 46–58

    CAS  Google Scholar 

  • Krumbein WE, Paterson DM, Stal LJ (1994) Biostabilization of sediments. BIS-Verlag, Oldenburg

    Google Scholar 

  • Lemche H, Hansen B, Madsen FJ, Tendal O, Wolff T (1976) Hadal life as analyzed from photographs. Meddr Dansk Naturh Foren 139: 263–336

    Google Scholar 

  • Lochte K (1993) Mikrobiologie von Tiefseesedimenten. In: Meyer-Reil LA, Köster M (Hrsg) Mikrobiologie des Meeresbodens. Fischer, Jena, S 258–282

    Google Scholar 

  • Lotze HK (1994) Phänologische und ökophysiologische Untersuchungen an Grünalgen im Wattenmeer. Diplomarbeit, Univ Kiel

    Google Scholar 

  • Marcotte BM (1984) Behaviourally defined biological resources and speciation in Tisbe (Copeopda, Harpacticoida). J Crustacean Biol 4: 404–416

    Article  Google Scholar 

  • Meier-Reil LA, Köster M (1993) Mikrobiologie des Meeresbodens. Fischer, Jena Müller E, Loeffler W ( 1982 ) Mykologie. Thieme, Stuttgart

    Google Scholar 

  • Müller U, Ax P (1971) Gnathostomulida von der Nordseeinsel Sylt mit Beobachtungen zur Lebensweise und Entwicklung von Gnathostomula paradoxa Ax. Mikrofauna Meeresboden 9: 1–41

    Google Scholar 

  • Mullineaux LS (1987) Organisms living on manganese nodules and crusts: distribution and abundance at three North Pacific sites. Deep Sea Res 34: 165–184

    Article  Google Scholar 

  • Nyfeller F, Godet CH (1986) The structural patterns of the benthic nepheloid layer in the Northeast Atlantic. Deep Sea Res 33: 195–207

    Article  Google Scholar 

  • Ottow JCG (1983) Ökologische Folgen der Manganknollengewinnung. Naturwiss Rundsch 36: 48–59

    CAS  Google Scholar 

  • Palmer JD, Round FE (1967) Persistent vertical migration rhythms in benthic microflora. VI. The tidal and diurnal nature of the rhythm in the diatom Hantzschia virgata. Biol Bull 132: 44–55

    Article  Google Scholar 

  • Parkes RJ, Cragg BA, Fry JC, Herbert RA, Wimpenny JWD (1990) Bacterial biomass and activity in deep sea sediment layers from the Peru margin. Phil Trans R Soc London A 331: 139–153

    Article  CAS  Google Scholar 

  • Paterson DM, Crawford RM, Little C (1990) Subaerial exposure and changes in the stability of intertidal estuarine sediments. Est Coast Shelf Sci 30: 541–556

    Article  Google Scholar 

  • Peeken I (1989) Gibt es einen Tagesrhythmus beim Mikrophytobenthos der Kieler Bucht? Diplomarbeit Univeristät Kiel

    Google Scholar 

  • Peres JM (1982) Major benthic assemblages. In: Kinne O (ed) Marine ecology, vol 5, part 1. Wiley, New York, pp 373–522

    Google Scholar 

  • Philippart CJM (1995) Effect of periphyton grazing by Hydrobia ulvae on the growth of Zostera noltii on a tidal flat in the Dutch Wadden Sea. Mar Biol 122: 431–437

    Article  Google Scholar 

  • Raghukumar S (1992) Bacterivory: a novel dual role for thraustochytrids in the sea. Mar Biol 113: 165–169

    Article  Google Scholar 

  • Reise K, Ax P (1979) A meiofaunal „thiobios“ limited to the anaerobic sulfide system of marine sand does not exist. Mar Biol 54: 225–237

    Article  Google Scholar 

  • Reusch TBH, Chapman ARO, Gröger JP (1994) Blue mussels Mytilus edulis do not interfere with eelgrass Zostera marina but fertilize shoot growth through biodeposition. Mar Ecol Progr Ser 108: 265–282

    Article  Google Scholar 

  • Riemann F (1985) Mangan in pazifischen Tiefsee-Rhizopoden und Beziehungen zur Manganknollen-Genese. In Rev Ges Hydrobiol 70: 165–172

    Google Scholar 

  • Rutgers van der Loeff MM (1990) Oxygen in pore waters of deep sea sediments. Phil Trans R Soc London A 331: 69–84

    Article  Google Scholar 

  • Sanders HL (1958) Benthic studies in Buzzards Bay. I. Animal-sediment relationships. Limnol Oceanogr 3: 245–258

    Article  Google Scholar 

  • Seibold E (1974) Der Meeresboden. Ergebnisse und Probleme der Meeresgeologie. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Shirayama Y, Hirokoshi M (1989) Comparison of the benthic size structure between sublittoral, upper slope and deep-sea areas of the Western Pacific. Int Rev Ges Hydrobiol 74: 1–13

    Article  Google Scholar 

  • Short FT, Muehlstein LK, Porter D (1987) Eeelgrass wasting disease: cause and recurrence of a marine epidemic. Biol Bull 173: 557–562

    Article  Google Scholar 

  • Sommer U (1996) Algen, Quallen, Wasserfloh. Springer, Berlin, Heidelber, New York, Tokyo

    Google Scholar 

  • Sorensen J, Jorgensen BB, Revsbach NP (1979) A comparison of oxygen, nitrate and sulfate respiration in coastal marine sediments. Microb Ecol 5: 105–115

    Article  Google Scholar 

  • Stal LJ (1993) Mikrobielle Matten. In: Meyer-Reil LA, Köster M (Hrsg) Mikrobiologie des Meeresbodens. Fischer, Jena, S 196–220

    Google Scholar 

  • Suess E, Carson B, Ritger SD, Moore JC, Jones KL, Kulm CD, Cochrane GR, (1985) Biological communities at vent sites along the subduction zone off Oregon. Wash Biol Soc Bull 6: 475–484

    Google Scholar 

  • Underwood GJC, Paterson DM (1993) Seasonal changes in diatom biomass, sediment stability and biogenic stabilization in the Severn estuary. J Mar Biol Ass UK 73: 871–887

    Article  Google Scholar 

  • Wahl M (1989) Marine epibiosis. I. Fouling and antifouling. Some basic ascpects. Mar Ecol Progr Ser 58: 175–189

    Article  Google Scholar 

  • Wasmund N (1986) Ecology and bioproduction in the microphytobenthos of the chain of shallow inlets (Boddens) south of the Darß-Zingst Penninsula (Southern Baltic Sea). Int Rev Ges Hydrobiol 71: 153–178

    Article  CAS  Google Scholar 

  • Zajicev JP, Ancupova LV, Vorobeva LV, Garkavaja GP, Kulakova II, Rusnak EM (1987) Nematody v glubokovodnoj zone Cernogo Morja (Nematoden der tiefen Zone des Schwarzen Meeres). Dokl AN USSR, Ser B, Geol Chim Biol Nauki 11: 77–79

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sommer, U. (1998). Marine Lebensgemeinschaften IV: Benthos der Sedimente. In: Biologische Meereskunde. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21673-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21673-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63512-3

  • Online ISBN: 978-3-662-21673-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics