Skip to main content

Marine Lebensgemeinschaften III: Das Benthos harter Substrate

  • Chapter
Biologische Meereskunde

Part of the book series: Springer-Lehrbuch ((SLB))

  • 282 Accesses

Zusammenfassung

Vielfalt ist der erste Eindruck, den das Benthos der Felsküsten auf den Besucher macht. Muscheln, Krabben, Korallen, Seesterne, Seeigel und Tange repräsentieren eigenartige Baupläne, mit denen der Kenner von Landorganismen nicht vertraut ist. Von allen Lebensgemeinschaften des Meeres ist das Hartbodenbenthos dem Laien am zugänglichsten. Das Sammeln von Muscheln und Schnecken und die überwältigenden Eindrücke beim Schnorcheln oder beim Gerätetauchen sind oft der Beginn eines lebenslangen Interesses and der Biologie des Meeres. Auch die wissenschaftliche Untersuchung der Ökologie des Hartbodenbenthos zeichnet sich durch einen besonderen Grad von Anschaulichkeit aus. Oft kann eine destruktive Probenahme unterbleiben. Die Organismen können beobachtet und gezählt werden, ohne daß sie aus ihren Aktivitäten gerissen werden. Konkurrenzexperimente oder Räuber-Beute-Experimente können durch manuelles Hinzufügen oder Entfernen von Organismen durchgeführt werden. Es ist also kein Wunder, daß das Benthos der Felskästen zu einer Hochburg der wissenschaftlichen Analyse von Wechselbeziehungen zwischen den Organismen geworden ist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Aaronson RB, Precht WF (1995) Landscape patterns of reef coral diversity: a test of the intermediate disturbance hypothesis. J Exp Mar Biol Ecol 192: 1–14

    Article  Google Scholar 

  • Atkinson MJ, Smith SV (1983) C:N:P ratios of benthic marine plants. Limnol Oceanogr 28: 568–574

    Article  CAS  Google Scholar 

  • Branch GM (1981) The biology of limpets: physical factors, energy flow and ecological interactions. Oceanogr Mar Biol Ann Rev 19: 235–380

    Google Scholar 

  • Conell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199: 1304–1310

    Google Scholar 

  • Dayton PK (1971) Competition, disturbance and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol Monogr 41: 351–389

    Article  Google Scholar 

  • Wit CT (1960) On competition. Versl. Landbouwk. Onderz. (Landwirtschaftliche For-schungsberichte) 66.8, Wageningen

    Google Scholar 

  • Dring MJ, Brown FA (1982) Photosynthesis of intertidal brown algae during and after periods of emersion: a renewed search for physiological causes of zonation. Mar Ecol Progr Ser 8: 301–308

    Article  Google Scholar 

  • Elner RW, Vadas RL (1990) Inference in ecology: the sea urchin phenomenon in the Northwestern Atlantic. Am Nat 136: 108–125

    Article  Google Scholar 

  • Engelmann TW (1883) Farbe und Assimilation. Bot Ztg 41: 1–29

    Google Scholar 

  • Estes RW, Palmisano JF (1974) Sea otters: their role in structuring nearshore communities. Science 185: 1058–1060

    Article  PubMed  CAS  Google Scholar 

  • Fabricius KF, Benayahu Y, Genin A (1995) Herbivory in asymbiotic soft coarals. Science 268: 90–92

    Article  PubMed  CAS  Google Scholar 

  • Goreau TF (1961) Problems of growth and calcium deposition in reef corals. Endeavour 20: 32–39

    Article  Google Scholar 

  • Gygi RA (1969) Korallenriffe in Bermuda heute und im Jura vor 140 Millionen Jahren. Veröff Naturhist Museum Basel 7: 1–22

    Google Scholar 

  • Hatton H (1938) Essais de bionomie explicative sur quelques espèces intercodidales d’algues et d’animaux. Ann Inst Oceanograph 17: 241–348

    Google Scholar 

  • Hawkins SJ, Hartnoll RG (1983) Grazing of intertidal algae by marine invertebrates. Oceanogr Mar Biol Ann Rev 21: 195–282

    Google Scholar 

  • Hoek C van den, Jahns HM, Mann DG (1993) Algen. Thieme, Stuttgart

    Google Scholar 

  • Hughes RN, Elner RW (1979) Tactics of a predator, Carcinus maenas and morphological responses of the prey, Nucella lapillus. J Anim Ecol 48: 65–78

    Article  Google Scholar 

  • Jannasch HW, Mottl MJ (1985) Geomicrobiology of deep-sea hydrothermal vents. Science 229: 717–725

    Article  PubMed  CAS  Google Scholar 

  • Kain JM (1989) The seasons in the subtidal. Br Phycol J 24: 203–215

    Article  Google Scholar 

  • Karez R (1996) Factors causing the zonation of three Fucus species (phaeophyta) in the intertidal zone of Helgoland ( German Bight, North Sea). Dissertation Universität Kiel

    Google Scholar 

  • Keddy PA (1989) Competition. Chapman Hall, New York

    Book  Google Scholar 

  • Keddy PA (1990) Competitive hierarchies and centrifugal organisation in plant communities. In: Grace JB, Tilman D (eds) Perspectives on plant competition. Academic Press, San Diego, pp 265–290

    Google Scholar 

  • Kristensen I (1968) Surf influence on the thallus of fucoids and the rate of desiccation. Sarsia 34: 69–82

    Google Scholar 

  • LeDanois E (1955) Das große Buch der Meeresküsten. Kosmos-Gesellschaft der Naturfreunde. Franckh, Stuttgart

    Google Scholar 

  • Logan BW (1961) Cryptozoon and associate stromatolites from the recent, Shark Bay, Western Australia. J Geol 69: 517–533

    Article  Google Scholar 

  • Lubchenco J (1983) Littorina and Fucus: effects of herbivores, substratum heterogeneity, and plant escapes during succession. Ecology 64: 1116–1123

    Google Scholar 

  • Lubchenco J, Menge B (1978) Community development and persistence in a low rocky intertidal zone. Ecol Mongr 48: 67–94

    Article  Google Scholar 

  • Lüning K (1985) Meeresbotanik. Thieme, Stuttgart

    Google Scholar 

  • Lüning K (1994) When do algae grow? Eur J Phycol 29: 61–67

    Article  Google Scholar 

  • Lüning K, Dring MJ (1979) Continuous under water light measurement near Helgoland ( North Sea) and its significance for characteristic light limits in the sublittoral region. Helgol wiss Meeresunters 32: 403–424

    Google Scholar 

  • Lüning K, Schmitz K, Willenbrink J (1973) CO2 fixation and translocation in benthic marine algae. III. Rates and ecological significance of translocation in L. hyperborea and L. saccharina. Mar Biol 23: 275–281

    Article  Google Scholar 

  • Mann KH (1985) Population outbrakes of sea urchins: natural or man-made fluctuations. Abstracts 43rd ASLO meeting, Minneapolis 1985

    Google Scholar 

  • Mann KH, Breen PA. 1972. The relation between lobster abundance, sea urchins, and kelp beds. J Fish Res Bd Canada 29: 603–605

    Article  Google Scholar 

  • Maynard Smith J (1964) Group selection and kin selection. Nature 201: 1145–1147

    Article  Google Scholar 

  • Menge BA (1976) Organization of the New England rocky intertidal community: The role of predation, competition and environmental heterogeneity. Ecol Monogr 46: 355–393

    Article  Google Scholar 

  • Menge BA (1991) Generalizing from experiments: is predation weak or strong in the New England rocky intertidal. Oecologia 88: 1–8

    Article  Google Scholar 

  • Miller RJ, Mann KH, Scarratt DJ (1971) Potential production of a lobster-seaweed community in eastern Canada. J Fish Res Bd Canada 28: 1733–1738

    Article  Google Scholar 

  • Monty C (1967) Distribution and structure of some stromatolithic mats, Eastern Andros Island, Bahamas. Annls Soc Geol Belg Bull 88: 269–276

    Google Scholar 

  • Norton TA, Hawkins SJ, Manley NL, Williams GA, Watson DC (1990) Scraping a living: A review of littorinid grazing. Hydrobiologia 193: 117–138

    Google Scholar 

  • Paine RT (1966) Food web complexity and species diversity. Am Nat 100: 65–75

    Article  Google Scholar 

  • Paine RT (1984) Ecological determinism in the competition for space. Ecology 69: 1648–1654

    Article  Google Scholar 

  • Paine RT (1994) Marine rocky shores and community ecology: an experimentalist’s perspective. Ecology Institute, Oldendorf

    Google Scholar 

  • Pueschel CM, Miller TJ (1996) Reconsidering prey specializations in an algal-limpet grazing mutualism: epithallial cell developmet in Clathromorphum circumscriptum ( Rhodophyta, Corallinales). J Phycol 32: 28–36

    Google Scholar 

  • Roughgarden J, Gaines SD, Pacala SW (1987) Supply side ecology: the role of physical transport processes. In: Ghee JHR, Giller PS (eds) Organisation of communities, past and present. Blackwell, Oxford, pp 491–518

    Google Scholar 

  • Schaffelke B, Lüning K (1994) A circannual rhythm controls seasonal growth in the kelps Laminaria hyperborea and L. digitata from Helgoland ( North Sea ). Eur J Phycol 29: 4956

    Google Scholar 

  • Schonbeck MW, Norton TA (1978) Factors controlling the upper limits of fucoid algae on the shore. J Exp Mar Biol Ecol 31: 303–313

    Article  Google Scholar 

  • Seibold E (1974) Der Meeresboden. Ergebnisse and Probleme der Meeresgeologie. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Sommer U (1996) Nutrient competition experiments with periphyton from the Baltic Sea. Mar Ecol Progr Ser 140: 161–167

    Article  CAS  Google Scholar 

  • Sorokin YI (1995) Coral reef ecology. Springer, Berlin, Heidelberg, New York, Tokyo

    Google Scholar 

  • Southward AJ, Southward EC (1978) Recolonization of rocky shores in Cornwall after the use of toxic dispersants to clean up the Torrey Canon spill. J Fish Res Bd Can 35: 682–706

    Article  Google Scholar 

  • Stebbing ARD (1973) Competition for space between the epiphytes of Fucus serratus L. J Mar Biol Ass UK 53: 247–261

    Article  Google Scholar 

  • Steneck RS (1983) Escalating herbivory and resulting adaptive trends in calcareous algal crusts. Paleobiology 9: 44–61

    Google Scholar 

  • Thorson G (1961) Length of pelagic larval life in marine bottom invertebrates as related to larval transport by ocean currents. Oceanogr Amer Ass Adv Sci, 455–471

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sommer, U. (1998). Marine Lebensgemeinschaften III: Das Benthos harter Substrate. In: Biologische Meereskunde. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21673-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21673-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63512-3

  • Online ISBN: 978-3-662-21673-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics