Skip to main content

Marine Lebensgemeinschaften I: Das Plankton

  • Chapter
Biologische Meereskunde

Part of the book series: Springer-Lehrbuch ((SLB))

  • 320 Accesses

Zusammenfassung

„Blau ist die Wüstenfarbe der Ozeane“. Dieses Sprichwort ist den Fischern schon lange bekannt. Die großen Bestände pelagischer Schwarm-fische finden sich keineswegs im klaren, warmen Wasser der tropischen Ozeane, sondern im trüben, grün bis braun gefärbten Wasser der kalten Meere und der ebenfalls kalten Auftriebszonen. Natürlich liegt das nicht daran, daß die Fische bei höheren Wassertemperaturen schlechter wachsen würden. Es liegt vielmehr an der Basis des pelagischen Nahrungsnetzes. In den kalten Meeresgebieten gibt es mehr Pflanzennährstoffe, daher können mehr planktische Algen („Phytoplanktr“) wachsen. Vom Phytoplankton kommt auch die grüne bis braune Färbung des Wassers in den fruchtbaren („eutrophen“), kalten Zonen. Von den vielen Algen können sich wiederum viele Kleintiere („Zooplankton“) ernähren, die den Fischen als Nahrungsbasis dienen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Antia N (1976) Effects of temperature on the darkness survival of marine microplanktonic algae. Microb Ecol 3: 51–54

    Article  Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water column microbes in the sea. Mar Ecol Progr Ser 10: 257–263

    Article  Google Scholar 

  • Bates SS, Worms J, Smith JC (1993) Effects of ammonium and nitrate on growth and domoic acid production by Nitzschia pungens in batch culture. Can J Fish Aquat Sci 50: 1248–1254

    Article  CAS  Google Scholar 

  • Bautista B, Harris RP, Tranter PRG, Harbour D (1992) In situ copepod feeding and grazing rates during a spring bloom dominated by Phaeocystis sp. in the English Channel. J Plankton Res 14: 691–703

    Article  Google Scholar 

  • Behrends G, Schneider G (1995) Impact of Aurelia aurita medusae ( Cnidaria, Scyphozoa) on the standing stock and community composition in the Kiel Bight (western Baltic Sea). Mar Ecol Prog Ser 127: 39–45

    Google Scholar 

  • Bergh O, Borsheim KY, Bratbak G, Heldal M (1989) High abundances of viruses found in aquatic environments. Nature 340: 467–469

    Article  PubMed  CAS  Google Scholar 

  • Bienfang PK (1981) SETCOL–A technologically simple and reliable method for measuring phytoplankton sinking rates. Can J Fish Aqu Sci 38: 1289–1294

    Article  Google Scholar 

  • Bloesch J, Burns NM (1980) A critical review of sedimentation trap technique. Schweiz Z Hydro’ 42: 15–55

    Google Scholar 

  • Bratbak G, Thingstad GF (1985) Phytoplankton-bacteria interactions: An apparent paradox? Analysis of a model system with both competition and commensalism. Mar Ecol Progr Ser 25: 23–30

    Google Scholar 

  • Braunwarth C, Sommer U (1985) Analysis of the in situ growth rates of cryptophyceae by use of the mitotic index technique. Limnol Oceanogr 30: 893–897

    Article  Google Scholar 

  • Brocksen RW, Davis GE, Warren CE (1970) Analysis of trophic processes on the basis of density dependent functions. In: Steele JH (Hrsg) Marine food chains. Oliver & Boyd, Edinburgh, pp. 468–498

    Google Scholar 

  • Bruning K (1991) Effects of phosphorus limitation on the epidemiology of a chytrid phytoplankton parasite. Freshwat Biol 25: 409–417

    Article  Google Scholar 

  • Buchholz F (1991) Moult cycle and growth of antarctic krill, Euphausia superba, in the laboratory. Mar Ecol Progr Ser 69: 217–229

    Article  Google Scholar 

  • Caron DA, Goldman JC, Dennet MR (1988) Experimental demonstration of the roles of bacteria and bacterivorous protozoa in plankton nutrient cycles. Hydrobiologia 159: 27–40

    Article  Google Scholar 

  • Carpenter SR, Kitchell JF, Hodgson DR (1985) Cascading trophic interactions and lake productivity. Bioscience 35: 634–639

    Article  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199: 1304–1310

    Article  Google Scholar 

  • Cullen JJ (1982) The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a. Can J Fish Aqu Sci 39: 791–803

    Article  CAS  Google Scholar 

  • Eggleton P, Gaton KJ (1990) „Parasitoid“ species and assmblages: convenient definitions or misleading compromises? Oikos 59: 417–421

    Google Scholar 

  • Frank H, Moebus K (1987) An electron microscope study of bacteriophages from marine waters. Helgol wiss Meeresunters 41: 385–414

    Article  Google Scholar 

  • Frost BW (1988) Variability and possible adaptive significance of diel vertical migration in Calanus pacificus, a planktonic marine copepode. Bull Mar Sci 43: 675–694

    Google Scholar 

  • Fulton J (1973) Some aspects of the life history of Calanus plumchrus in the Strait of Georgia. J Fish Res Bd Can 30: 811–815

    Article  Google Scholar 

  • Gaedeke A, Sommer U (1986) The influence of the frequency of periodic disturbances on the maintenance of phytoplankton diversity. Oecologia 71: 25–28

    Article  Google Scholar 

  • Gliwicz ZM (1986) Predation and the evolution of vertical migration in zooplankton. Nature 320: 746–748

    Article  Google Scholar 

  • Graneli E, Sundström B, Edler L, Anderson DM (1990) Toxic marine phytoplankton. Elsevier, New York

    Google Scholar 

  • Hansen PJ, Cembella AD, Moestrup O (1992) The marine dinoflagellate Alexandrium ostenfeldii: paralytic shellfish toxin concentration, composition and toxicity to a tintinnid ciliate. J Phycol 28: 597–603

    Article  CAS  Google Scholar 

  • Hays GC, Proctor CA, John AWG, Warner AG (1994) Interspecific differences in the vertical migration of marine copepodes: the implications of size, color, and morphology. Limnol Oceanogr 39: 1621–1629

    Article  Google Scholar 

  • Holfeld H (1992) Pilzbefall bei Planktonalgen. Dissertation Universität Kiel

    Google Scholar 

  • Huisman J, Weissing FJ (1994) Light-limited growth and competition for light in well-mixed aquatic environments: An elementary model. Ecology 75: 507–520

    Google Scholar 

  • Huntley M, Sykes P, Rohan S, Marin V (1986) Chemically-mediated rejection of dinoflagellate prey by the copepodes Calanus pacificus and Paracalanus parvus: mechanisms, occurrence and significance. Mar Ecol Prog Ser 28: 105–120

    Article  Google Scholar 

  • Hutchinson GE (1961) The paradox of plankton. Am Nat 95: 137–147

    Article  Google Scholar 

  • Lampert W (1987) Predictability in lake ecosystems: the role of biotic interactions. In: Schulze ED, Zwölfer H (Hrsg) Ecological Studies, Vol 61. Springer, Berlin Heidelberg New York Tokyo, pp. 333–346

    Google Scholar 

  • Lampert W, Loose C (1992) Plankton towers: bridging the gap between laboratory and field experiments. Arch Hydrobiol 126: 53–66

    Google Scholar 

  • Lampert W, Schober U (1978) Das regelmäßige Auftreten von Frühjahrsmaximum and Klarwasserstadium im Bodensee als Folge klimatischer Bedingungen and Wechselwirkungen zwischen Phyto-and Zooplankton. Arch Hydrobiol 82: 364–386

    Google Scholar 

  • Lampert W, Sommer U (1993) Limnoökologie. Thieme, Stuttgart

    Google Scholar 

  • Loose CJ, von Elert E, Dawidowicz P (1993) Chemically induced vertical migration in Daphnia: a new bioassay for kairomones exuded by fish. Arch Hydrobiol 126: 329–337

    Google Scholar 

  • Maestrini SY, Graneli E (1991) Environmental conditions and ecophysiological mechanisms which led to the 1988 Chrysochromulina polylepis bloom. Oceanol Acta 14: 397–413

    CAS  Google Scholar 

  • Marr JWS (1962) The natural history an geography of the antarktic krill (Euphausia superba Dana). Discovery Rep 32: 33–464

    Google Scholar 

  • Peters RH (1986) The role of prediction in limnology. Limnol Oceanogr 31: 1143–1159

    Article  CAS  Google Scholar 

  • Platt T, Denman KL (1980) Patchiness in phytoplankton distribution. In: Morris I (Hrsg) The physiological ecology of phytoplankton. Blackwell, Oxford, pp 413–431.

    Google Scholar 

  • Pomeroy LR (1974) The oceans food web, a changing paradigm. BioScience 24: 499–504

    Google Scholar 

  • Radach G, Berg J, Hagmeier E (1990) Long-term changes of the annual cycles of meterological, hydrographic, nutrient and phytoplankton time series at Helgoland and at LV ELBE 1 in the German Bight. Contin Shelf Res 10: 305–328

    Article  Google Scholar 

  • Reid PC (1975) Large scale changes in North Sea phytoplankton. Nature 257: 217–219 Reinheimer G (1991) Mikrobiologie der Gewässer. 5. Aufl, Fischer, Jena

    Google Scholar 

  • Reinheimer G (1996) Verteilung der Bakterien, Pilze and Viren. In: Reinheimer G (Hrsg) Meereskunde der Ostsee. Springer, Berlin Heidelberg New York Tokyo, S 116–122

    Google Scholar 

  • Reynolds CS (1984) The ecology of freshwater phytoplankton. Cambridge Univ Press

    Google Scholar 

  • Riegman R (1991) Mechanisms behind eutrophication induced novel algal blooms. NIOZ Rapport 9: 1–51

    Google Scholar 

  • Roff JC, Hoperoft RR, Clarke C, Chishol LA, Lynn DH, Gilron GL (1990) Structure and energy flow in a tropical neritic planktonic community off Kingston, Jamaica. In: Barnes M, Gibson RN (Hrsg) Trophic relationships in the marine environment. Aberdenn Univ Press, Aberdeen, pp 266–280

    Google Scholar 

  • Rosenzweig ML, McArthur RH (1963) Graphical representation and stability conditions of predator-prey-interactions. Am Nat 97: 209–223

    Article  Google Scholar 

  • Rothhaupt KO (1988) Mechanistic resource competition theory applied to laboratory experiments with zooplankton. Nature 333: 660–662

    Article  Google Scholar 

  • Rothhaupt KO, Güde H (1992) The influence of spatial and temporal gradients on phosphate partitioning between different size fractions of plankton: further evidence and possible causes. Limnol Oceanogr 37: 739–749

    Article  CAS  Google Scholar 

  • Sanders RW, Porter KG (1988) Phagotrophic flagellates. Advances in Microbial Ecology 10: 167–192

    Article  Google Scholar 

  • Schaffer WM (1985) Order and chaos in ecological systems. Ecology 66: 93–106

    Article  Google Scholar 

  • Scheffer M (1991) Should we expect strange attractors behind plankton dynamics–an if so, should we bother? J Plankton Res 13: 1291–1305

    Article  Google Scholar 

  • Schuchardt B, Holfeld H (1991) On Podochytrium cornutum infecting the diatom Actinocyclus normanii in the inner part of the Weser estuary. Nova Hedwigia 52: 337–347

    Google Scholar 

  • Smayda TJ (1971) Normal and accelerated sinking of phytoplankton in the sea. Mar Geol 11: 105–122

    Article  Google Scholar 

  • Smetacek V, Bodungen B, Knoppers B, Peinert R, Pollehne F, Stegmann P, Zeitzschel B (1984) Seasonal stages characterizing the annual cycle of an inshore pelagic ecosystem. Rapp P V Reun Cons Int Explor Mer 183: 126–135

    Google Scholar 

  • Smith SL, Schnack-Schiel S (1990) Polar zooplankton. In: Smith 0 Jr (Hrsg) Polar oceanography, Part B. Academic Press, San Diego, pp 527–598

    Google Scholar 

  • Sommer U (1984) Sedimentation of principal phytoplankton species in Lake Constance. J Plankton Res 6: 1–14

    Article  Google Scholar 

  • Sommer U (1986) Nitrate-and silicate competition among antarctic phytoplankton. Mar Biol 91: 345–351

    Article  CAS  Google Scholar 

  • Sommer U (1988) Some size relationships in phytoflagellate motility. Hydrobiologia 161: 125–131

    Article  Google Scholar 

  • Sommer U (1989a) The role of competition for resources in phytoplankton succession. In: Sommer U (Hrsg) Plankton ecology: Succession in plankton communities. Springer, Berlin Heidelberg New York Tokyo, 57–106

    Chapter  Google Scholar 

  • Sommer U ( 1994 a) Planktologie. Springer, Berlin Heidelberg New York Tokyo

    Book  Google Scholar 

  • Sommer U (1994b) The impact of light intensity and daylength on silicate and nitrate competition among marine phytoplankton. Limnol Oceanogr 39: 1680–1688

    Article  Google Scholar 

  • Sommer U (1994c) Are marine diatoms favoured by high Si:N ratios? Mar Ecol Progr Ser 115: 309–315

    Article  CAS  Google Scholar 

  • Sommer U (1995) An experimental test of the intermediate disturbance hypothesis using cultures of marine phytoplankton. Limnol Oceanogr 40: 1271–1277

    Article  Google Scholar 

  • Sommer U (1996 a) Plankton ecology: the last two decades of progress. Naturwissenschaften

    Google Scholar 

  • Sommer U (1996b) Algen, Quallen, Wasserfloh. Springer, Berlin Heidelber New York Tokyo

    Chapter  Google Scholar 

  • Sommer U, Stabel HH (1983) Silicon consumption and population density changes of dominant planktonic diatoms in Lake Constance. J Ecol 71: 119–130

    Article  CAS  Google Scholar 

  • Sparrow FK (1960) Aquatic phycomycetes, 2nd edn Univ Mich Press, Ann Arbor

    Google Scholar 

  • Sverdrup HU (1953) On conditions for the vernal blooming of hytoplankton. J Cons Explor Mer 18: 287–295

    Article  Google Scholar 

  • Tait RV (1981) Elements of marine ecology. 3rd edn, Butterwoths, London

    Google Scholar 

  • Targett NM, Ward JE (1991) Bioactive microalgal metabolites: mediation of subtle ecological interactions in phytophagous suspension-feeding marine invertebrates. Bioorg Mar Chem 4: 91–118

    Article  CAS  Google Scholar 

  • Tilman D (1977) Resource competition between planktonic algae: an experimental and theoretical approach. Ecology 58: 338–348

    Article  CAS  Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton Univ Press, Princeton NJ.

    Google Scholar 

  • Tilman D, Sterner RW (1984) Invasions of equilibria: test of resource competition using two species of algae. Oecologia 61: 197–200

    Article  Google Scholar 

  • Turpin DH, Harrison PJ (1980) Cell size manipulation in natural marine, planktonic, diatom communities. Can J Fish Aquat Sci 37: 1193–1195

    Article  Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplanktonmethodik. Mitt internat Verein Limnol 9: 1–38

    Google Scholar 

  • Viso AC, Pesando D, Baby C (1987) Antibacterial and antifungal properties of some marine diatoms in culture. Bot Mar 30: 41–45

    Article  Google Scholar 

  • Walsby AF, Reynolds CS (1980) Sinking and floating. In: Morris I (Hrsg) The physiological ecology of phytoplankton. Blackwell, Boston, pp 371–412

    Google Scholar 

  • Wissel C (1989) Theoretische Ökologie. Springer, Berlin Heidelberg New York Tokyo

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sommer, U. (1998). Marine Lebensgemeinschaften I: Das Plankton. In: Biologische Meereskunde. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21673-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21673-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63512-3

  • Online ISBN: 978-3-662-21673-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics