Skip to main content

Ökophysiologie II: Ernährung und Stoffwechsel

  • Chapter
Book cover Biologische Meereskunde

Part of the book series: Springer-Lehrbuch ((SLB))

  • 253 Accesses

Zusammenfassung

Lavoisier, Chemiker und Vater der wissenschaftlichen Physiologie (1743–1794), verglich Organismen mit einer Flamme: Oxidierende Moleküle betreten sie an ihrer Wurzel und verlassen sie an ihrer Spitze. Die Flamme bleibt dennoch dieselbe, obwohl sie ständig von neuen Substanzen durchflossen wird. Dieser ständige Stoffwechsel mit der Umwelt und innerhalb des eigenen Körpers ist auch ein charakteristisches Merkmal des Lebens. Er ist ein ständiges Nehmen und Geben von chemischen Substanzen und hat dabei zwei Aspekte: den Aufbau eigener Körpersubstanz aus Fremdmaterialien (Baustoffwechsel) und die Bereitstellung von Energie für die Lebensprozesse aus der Oxidation organischer Substanzen (Betriebsstoffwechsel). Den Baustoffwechsel bezeichnet man auch als assimilatorischen Stoffwechsel, da Fremdsubstanz in die eigene Körpersubstanz eingebaut wird. Den Betriebsstoffwechsel bezeichnet man auch als dissimilatorischen Stoffwechsel, da eigene Substanz dem Körper wieder „entfremdet“ wird.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Andersen H (1969) The biology of marine mammals. Academic Press, London

    Google Scholar 

  • Asare SO, Harlin MM (1983) Seasonal fluctuations in tissue nitrogen for five species of perennial macroalgae in Rhode Island Sound. J Phycol 19: 254–257

    Article  CAS  Google Scholar 

  • Bratbak C, Thingstad TF (1985) Phytoplankton-bacteria interactions: An apparent paradox? Analysis of a model system with both competition and commensalism. Mar Ecol Progr Ser 25: 23–30

    Google Scholar 

  • Chesson P (1983) The estimation of analysis and preference and its relation to forageing models. Ecology 65: 1297–1304

    Article  Google Scholar 

  • Chrost RJ (1991) Exoenzymes in aquatic environments: Microbial strategy for substrate supply. Verh Internat Verein Limnol 24: 2597–2600

    CAS  Google Scholar 

  • DeMott WR (1988) Discrimination between algae and artificial particles by freshwater and marine copepodes. Limnol Oceanogr 33: 397–408

    Article  Google Scholar 

  • Downing JA, Rigler FH (1984) A manual on methods for the assessment of secondary production in fresh waters. IBP- handbook 17, 2nd ed. Blackwell, Oxford

    Google Scholar 

  • Droop MR (1983) 25 years of algal growth kinetics. Bot Mar 26: 99–112

    Google Scholar 

  • Dugdale RC (1967) Nutrient limitation in the sea: dynamics, identification and significance. Limnol Oceanogr 12: 685–697

    Article  Google Scholar 

  • Ehrhardt M (1996) Organische Komponenten. In: Reinheimer G (Hrsg) Meereskunde der Ostsee. Springer, Berlin, Heidelberg, New York, Tokyo, S 108–112

    Google Scholar 

  • Eppley RW, Strickland JDH (1968) Kinetics of marine phytoplankton growth. Adv Microbiol Sea 1: 23–62

    CAS  Google Scholar 

  • Finlay BJ (1985) Nitrate respiration by protozoa (Loxodes spp.) in the hypolimnetic nitrite maximum of a productive freshwater pond. Freshwat Biol 15: 333–346

    Article  Google Scholar 

  • Fuhrman JA, Azam F (1982) Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: Evaluation and field results. Mar Biol 66: 109–120

    Google Scholar 

  • Geller W, Müller H (1981) The filtration apparatus of Cladocera: Filter mesh-sizes and their implication on food selectivity. Oecologia 49: 316–321

    Google Scholar 

  • Goldman JC, McCarthy JJ, Peavey DJ (1979) Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279: 210–215

    Article  CAS  Google Scholar 

  • Gophen M, Geller W (1984) Filter mesh size and food particle uptake by Daphnia. Oecologia 64: 408–412

    Article  Google Scholar 

  • Gilde H (1986) Loss processes influencing growth of planktonic bacterial populations in Lake Constance. J Plankt Res 8: 795–810

    Article  Google Scholar 

  • Harris GP (1978) Photosynthesis, productivity and growth: the physiological ecology of phytoplankton. Ergeb Limnol 10: 1–163

    Google Scholar 

  • Hawkins AJS, Bayne BL (1993) Physiological interrelations and the regulation of production. In: Gosling E (ed) The mussel mytilus: ecology, physiology, genetics and culture. Elsevier, Amsterdam, pp. 171–222

    Google Scholar 

  • Holing CS (1959) The components of predation as revealed by a study of small mammal predation of the European Pine Sawfly. Can Entom 91: 293–320

    Article  Google Scholar 

  • Iturriaga R, Zsolnay A (1981) Transformation of some organic compounds by a natural heterotrophic population. Mar Biol 62: 125–129

    Article  CAS  Google Scholar 

  • Jacobs J (1974) Quantitative measurement of food selection. Oecologia 14: 413–417

    Article  Google Scholar 

  • Jacques G (1983) Some ecophysiological aspects of the antarctic phytoplankton. Pol Biol 2: 2733

    Article  Google Scholar 

  • Jannasch HW, Mottl MJ (1985) Geomicrobiology of deep-sea hydrothermal vents. Science 229: 717–725

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen EG (1969) The adaptation of plankton algae. IV. Light adaptation in different algal species. Physiol Plant 19: 1307–1315

    Article  Google Scholar 

  • Kirchman DL, K’nees E, Hodson RE (1985) Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Appl Envron Microbiol 49: 599–607

    CAS  Google Scholar 

  • Klawon A (1995) Die Bedeutung der Lichtfarbe für die Konkurrenz zwischen Dunaliella tertiolecta (Chlorophyta) und Rhodomonas spec. ( Cryptophyta ). Diplomarbeit Universität Oldenburg

    Google Scholar 

  • Kohl JG, Nicklisch A (1988) Ökophysiologie der Algen. Akademie Verlag, Berlin

    Google Scholar 

  • Kuenen JG, Bos P (1989) Habitats and ecological niches of chemolitho(auto)trophic bacteria. In: Schlegel HG, Bowien B (Hrsg) Autotrophic Bacteria. Springer, Berlin, Heidelberg, New York, Tokyo, pp. 53–80

    Google Scholar 

  • Lampert W, Sommer U (1993) Limnoökologie. Thieme, Stuttgart

    Google Scholar 

  • Landry MR, Hassett RP (1982) Estimating the grazing impact of marine micro-zooplankton. Mar Biol 67: 283–288

    Article  Google Scholar 

  • Laycock MV, Morgan KC, Craigie JS (1980) Physiological factor affecting the accumulation of L-citrullinyl-L-arginine in Chondrus crispus. Can J Bot 59: 522–527

    Article  Google Scholar 

  • Liebig Jv (1855) Die Grundsätze der Agrikulturchemie. Vieweg, Braunschweig

    Google Scholar 

  • Lüning K (1985) Meeresbotanik. Thieme, Stuttgart

    Google Scholar 

  • Mann H, Pieplow U (1938) Der Kalkhaushalt bei der Häutung der Krebse. Sitzber Ges naturforsch Freunde, Göttingen

    Google Scholar 

  • Martin JH, Gordon RM, Fitzwater SE (1990) Iron in Antarctic waters. Nature 345: 156–158

    Article  CAS  Google Scholar 

  • Monod J (1950) La technique de la culture continue: theorie et applications. Ann Inst Pasteur Lille 79: 390–410

    CAS  Google Scholar 

  • Morel FMM (1987) Kinetics of nutrient uptake and growth in phytoplankton. J Phycol 23: 137150

    Google Scholar 

  • Oeschger R, Vetter D (1992) Sulfide detoxification and tolerance in Halycriptus spinulosus (Priapulida): a multiple strategy. Mar Ecol Progr Ser 86: 167–179

    Article  CAS  Google Scholar 

  • Overbeck J (1975) Distribution pattern of uptake kinetic response in a stratified eutrophic lake. Verh Internat Verein Limnol 19: 2600–2615

    Google Scholar 

  • Palmer RE, Williams LG (1980). Effect of particle concentration on filtration efficiency of the bay scallop Agropecten irridians and the oyster Crassostrea virginica. Ophelia 19: 163174

    Google Scholar 

  • Parsons TR, Takahashi M, Hargrave B (1984) Biological oceanographic processes. 3rd edn, Pergamon, Oxford

    Google Scholar 

  • Penzlin H (1977) Lehrbuch der Tierphysiologie. 4. Aufl, Fischer, Stuttgart

    Google Scholar 

  • Rakusa-Suszczewski S (1969) The food of chaetognatha in the seas around the British Isles. Pol Arch Hydrobiol 16: 213–232

    Google Scholar 

  • Rhee GY (1978) Effects of N:P atomic ratios and nitrate limitation on algal cell growth, cell composition and nitrate uptake. Limnol Oceanogr 23: 10–25

    Article  CAS  Google Scholar 

  • Rieman B, Bell RT (1990) Advances in estimating bacterial biomass and production in aquatic systems. Arch Hydrobiol 118: 385–402

    Google Scholar 

  • Rothhaupt KO (1988) Ökophysiologische Grundlagen der Populationsdynamik und der zwischenartlichen Konkurrenz bei Rädertieren der Gattung Brachionus. Dissertation Universität Kiel

    Google Scholar 

  • Sakshaug E, Andresen K, Myklestad S, Olsen Y (1983) Nutrient status of phytoplankton communities in Norwegian waters (marine, brackish, and fresh) as reveiled by their chemical composition. J Plankton Res 5: 175–196

    Article  CAS  Google Scholar 

  • Sanders RW, Porter KG (1988) Phagotrophic flagellates. Advances in Microbial Ecology 10: 167–192

    Article  Google Scholar 

  • Schlegel HG (1992) Allgemeine Mikrobiologie. Thieme, Stuttgart

    Google Scholar 

  • Schramm W (1996) Pflanzen. In: Reinheimer G (Hrsg) Meereskunde der Ostsee. Springer, Berlin, Heidelberg, New York, Tokyo, S 202–209

    Google Scholar 

  • Simpson TL (1978) The biology of the marine sponge Micriona prolifera (Ellis et Solander). II. Spicule secretion and the effect of temperature on spicule size. J exp mar Biol Ecol 35: 3142

    Article  Google Scholar 

  • Sommer U (1986) Nitrate and silicate competition among antarctic phytoplankton. Mar Biol 91: 345–351

    Article  CAS  Google Scholar 

  • Sommer U (1991 a) Comparative nutrient status and competitive interactions of two Antarctic diatoms. J Plankton Res 13: 61–75

    Google Scholar 

  • Sommer U (1991 b) A comparison of the Droop and the Monod models of nutrient limited

    Google Scholar 

  • growth applied to natural populations of phytoplankton. Funct Ecol 5: 535–544

    Google Scholar 

  • Sommer U (1991 c) The application of the Droop-model of nutrient limitation to natural populations of phytoplankton. Verh Internat Verein Limnol 24: 791–794

    Google Scholar 

  • Sommer U (1992) Phosphorus-limited Daphnia: intraspecific facilitation instead of competition. Limnol Oceanogr 37: 966–973

    Article  Google Scholar 

  • Sommer U (1994) Planktologie. Springer, Berlin, Heidelberg, New York, Tokyo

    Google Scholar 

  • Suttle CA, Fuhrman JA, Capone DG (1990) Rapid ammonium cycling and concentration -dependent partitionning of ammonium and phosphate: Implications for carbon transfer in planktonic communities. Limnol Oceanogr 35: 424–433

    Google Scholar 

  • Theede H (1984) Physiological approaches to environmental problems of the Baltic. Limnologica 15: 443–458

    CAS  Google Scholar 

  • Tilzer MM (1984) The quantum yield as a fundamental parameter controlling vertical photosynthetic profiles of phytoplankton in Lake Constance. Arch Hydrobiol Suppl 69: 169–198

    Google Scholar 

  • Tilzer MM, Elbrächter M, Gieskes WW, Beese B (1986) Light-temperature interactions in the control of photosynthesis in antarctic phytoplankton. Pol Biol 5: 105–111

    Article  Google Scholar 

  • Urich K (1990) Vergleichende Biochemie der Tiere. Fischer, Stuttgart

    Google Scholar 

  • Vanderploeg HA, Scavia D (1979) Calculation and use of selectivity of feeding: zooplankton grazing. Ecol Model 7: 135–149

    Article  Google Scholar 

  • Williams PJL (1985) Biological and chemical aspects of dissolved organic material in the sea water. In: Riley JP, Skirrow G (eds) Chemical oceanography. Academic Press, London, pp 301–363

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sommer, U. (1998). Ökophysiologie II: Ernährung und Stoffwechsel. In: Biologische Meereskunde. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21673-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21673-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63512-3

  • Online ISBN: 978-3-662-21673-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics